Lecture 19:

Parallel Deep Network
Training + Course Recap

Parallel Computing
Stanford (5149, Winter 2019

Professor classification task

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Input:
image of a professor

probability of each of four possible labels

[(image)

“professor classifier”

Output:

~ 1111

Easy:
Mean:
Boring:
Nerdy:

7
7
7
7

Stanford (5149, Winter 2019

Professor classification network

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Input:
image of a professor

l

convlayer convlayer

convlayer

55

27
13

convlayer

convlayer

|,

384

25

\\
1 K 1
"R 5 — = —| _ 3
11 - i 3 B _‘:—"- 13
224 || 5\|~ &l 17 2

—

-

—

Max
pooling

Max
pooling

Stride
of 4

96

Recall: large networks may have
10’s-100’s of millions of parameters

-ETT 13 'HEHEEf HEEEE: P
256 T
Max 4
pooling 4096 4096
Easy: 72
Mean: ??
Boring: ?2?
Nerdy: 2?

13

Output:
probability of label

Stanford (5149, Winter 2019

Professor classification network

convlayer convlayer
convlayer convlayer convlayer
50
27
13 13 13
e e
1 N 1 — B
:.\ 5 ey -':“__-h — — 3 '___-"--_.:""" — " B } _’_
11 __“g i i 3 G :'3"' 13 Qj] 13 3 —-E-“: 13 dense dense
224 s\| |~ 27 AL+ 3 \ A, = -
55 384 384 256 T
256 Max 4096
Max Max pooling 4096
Stride\| o | PO°ling pooling
e ||ora

3
Easy: 0.26
Mean: 0.08
Boring: 0.14
Nerdy: 0.52

Network output

Stanford (5149, Winter 2019

Professor classification network

Ground truth

(what the answer should be)
Easy: 0.0

Mean: 0.0
Boring: 0.0
Nerdy: 1.0

convlayer convlayer

convlayer convlayer convlayer

55

27
< 13 13 13
T
: 5 e [i 3 --h"__-"-.-'-"" —_—
11 3 S ~+ 3 o e ===
- _ ~ >7 Q: oz 13 Qj .- 13 Qj X 13 dense dense
i 3
55 384 384 256

556 Max_
Max Max pooling
Stride\| o | PO°ling pooling

228\ || of 4

3

/

N
(N
Y
v
i
If,/
\
[
/
X
w
Y

-

s~ 1111

4096 4096

Easy: 0.26
Mean: 0.08
Boring: 0.14
Nerdy: 0.52

Network output

Stanford (5149, Winter 2019

Error (loss)

Ground truth:
(what the answer should be) Network output: *

Easy: 0.0 Easy: 0.26

Mean: 0.0 Mean: 0.08

Boring: 0.0 Boring: 0.14

Nerdy: 1.0 Nerdy: 0.52
Output of network
for correct Category

Common example: softmax loss: efe

_ Output of network

for all categories

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (f;),

but I'm showing a probability distribution above for clarity Stanford (5149 Winter 2019

DNN training

Goal of training: learning good values of network parameters so that the network
outputs the correct classification result for any input image

Ildea: minimize loss for all the training examples (for which the correct answer is known)

I — E L, (total loss for entire training set is sum of losses L; for each training example x;)

1

Intuition: if the network gets the answer correct for a wide range of training examples,

then hopefully it has learned parameter values that yield the correct answer for future
images as well.

Stanford (5149, Winter 2019

Gradient descent

An idea as old as the hills:

ELDORA

MOUNTAIN RESORT

et radha) S adrds it) R

N A4

A portion of the Eldora Mountain

Resortis located in the Roos
National Forest and is under
from the Forest Service, U.S.

evelt
Sermit
A

Oy AN
!
- FON

- ——— e g

T TPIPELNE

Trail Map Legend
—@— Easiest —liftline
— M — More Difficult Area Boundary
—¢—¢ Most Difficult « Snowshoe Trail
Easier Way Down Slow Skiing Area
Easiest Way Down First Aid

Stanford (5149, Winter 2019

Intuition: gradient descent

Say you had a function fthat contained hidden parameters p;andp,: | (:CZ)

And for some input x;, your training data says the function should output 0.

But for the current values of p; and p,, it currently outputs 10. red = high values of f

f(ajigpl,pQ) — 10 - blue = low values

And say | also gave you expressions for the derivative of f with
respect to p;and p, so you could compute their value at x;.

df

— 9 — 5 Vf=[2-5

How might you adjust the values p; and p; to reduce the error for this training example?

Stanford (5149, Winter 2019

Basic gradient descent

while (loss too high):
for each epoch: // a pass through the training dataset
for each i1tem x_1 1in training set:
grad = evaluate_loss gradient(f, params, loss_func, x 1)
params += —-grad *x learning_rate;

Mini-batch stochastic gradient descent (mini-batch SGD):
choose a random (small) subset of the training examples to use to compute the
gradient in each iteration of the while loop

while (loss too high):
for each epoch: // a pass through the training dataset
for all mini batches 1in training set:
grad = 0;
for each i1tem x _1 in minibatch:
grad += evaluate_loss gradient(f, params, loss_ func, x 1)
params += —-grad *x learning_rate;

How do we compute dLoss/dp for a deep neural network with millions of parameters?

Stanford (5149, Winter 2019

SGD workload

At first glance, this loop is sequential (each step of

while (loss too high): < “walking downhill” depends on previous)

for each item x_i in mini-batch:<«——— Parallel acrossimages
grad += evaluate_loss gradient(f, loss_func, params, x_ 1)

T . \ large computation with its own parallelism
sum reduction (but working set may not fit on single machine)

params += —grad x step_size;

\ trivial data-parallel over parameters

Stanford (5149, Winter 2019

DNN training workload

m Large computational expense

- Must evaluate the network (forward and backward) for millions of training images
- Must iterate for many iterations of gradient descent (100’s of thousands)
- Training modern networks on big datasets takes days

m Large memory footprint

- Must maintain network layer outputs from forward pass
- Additional memory to store gradients/gradient velocity for each parameter

- Scaling to larger networks requires partitioning DNN across nodes to keep DNN +
intermediates in memory

m Dependencies /synchronization (not embarrassingly parallel)

- Each parameter update step depends on previous
- Many units contribute to same parameter gradients (fine-scale reduction)
- Different images in mini batch contribute to same parameter gradients

Stanford (5149, Winter 2019

Synchronous data-parallel training (across images)

for each item x 1 in mini-batch:

grad += evaluate_loss gradient(f, loss_ func, params, x_ 1)

params += —grad x learning_rate;

Consider parallelization of the outer for loop across machines in a cluster

partition dataset across nodes

image Xo
parameter copy of
gradients parameter
due to xo values
Node 0

image Xi
parameter copy of
gradients parameter
due to x; values
Node 1

for each item x_1 in mini-batch assigned to local node:

grad += evaluate loss _gradient(f, loss_func, params, x_1)

barrier():

sum reduce gradients, communicate results to all nodes

barrier():

update copy of parameter values

Stanford (5149, Winter 2019

Synchronous training

m All nodes cooperate to compute gradients for a mini-batch *

B Gradients are summed (across the entire machine)
- All-to-all communication

- Good implementations will sum gradients for layer i when computing
backprop for i+1 (overlap communication and computation).

m Update model parameters

- Typically done without wide parallelism (e.g. each machine computes
its own update)

m All nodes proceed to work on next mini-batch given new model
parameters

* If curious about batch norm in a parallel training setting. In practice each of knodes works on a set of n

images, with batch norm statistics computed independently for each set of n (mini-batch size is kn).
Stanford (5149, Winter 2019

Challenges of scaling out (many nodes)

B Slow communication between nodes

- Commodity clusters do not feature high-performance
interconnects (e.g., infiniband) typical of supercomputers

- Synchronous SGD involves all to all communication after each
minibatch

B Nodes with different performance (even if machines are the same)
- Workload imbalance at barriers (sync points between nodes)

Alternative solution: exploit properties of SGD by
using asynchronous execution

Stanford (5149, Winter 2019

- Google’s DistBelief [Dean NIPS12]
Pa ra m Ete r se rve r d es I g n Parameter Server [Li 0SDI14]
Microsoft’s Project Adam [Chilimbi 0SDI14]
Pool of worker nodes

parameter
values
Parameter
Worker Worker Server
Node 0 Node 1
Worker Worker
Node 2 Node 3

Stanford (5149, Winter 2019

Training data partitioned among workers

Pool of worker nodes

training data

training data

Worker
Node 0

training data

Worker
Node 1

|
training data

Worker
Node 2

Worker
Node 3

Xo - X1000

X1000 - X2000

X2000-3000

X3000-4000

parameter
values (v0)

Parameter
Server

Stanford (5149, Winter 2019

Copy of parameters sent to workers

Pool of worker nodes

training data

local copy of
parameters (v0)

training data

local copy of
parameters (v0)

Worker
Node 0

training data

local copy of
parameters (v0)

Worker
Node 1

Worker
Node 2

dlning data

local copy of
parameters (v0)

Worker
Node 3

Ddalrams Vo

params Vo

params Vo

params Vo

parameter
values (v0)

Parameter
Server

Stanford (5149, Winter 2019

Pool of worker nodes

training data

local copy of
parameters (v0)

local
subgradients

Data parallelism: workers independently compute
local “subgradients” on different pieces of data

training data

local copy of
parameters (v0)

local
subgradients

parameter
values (v0)

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 3

Parameter
Server

Stanford (5149, Winter 2019

Pool of worker nodes

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 3

subgradient

Worker sends subgradient to parameter server

parameter
values (v0)

Parameter
Server

Stanford (5149, Winter 2019

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 3

Server updates global parameter values based on
subgradient

parameter
values (v1)

Parameter
Server

params += -subgrad x step_size;

Stanford (5149, Winter 2019

training data

local copy of
parameters (v0)

local
subgradients

Updated parameters sent to worker
Then worker proceeds with another gradient computation step

parameters (v1)

local
subgradients

Worker
Node 0

— params v
training data parameter
local copy of values (v1)
Parameter
Server

Worker
Node 1

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v0)

local
subgradients

Notice:

Node 1 is operating on different set of parameter
values than other nodes

Those parameter values were computed without
gradient information from the other nodes

Worker
Node 2

Worker
Node 3

Stanford (5149, Winter 2019

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v1)

local
subgradients

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 3

subgradient

Updated parameters sent to worker (again)

parameter
values (v1)

Parameter
Server

Stanford (5149, Winter 2019

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v1)

local
subgradients

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v2)

local
subgradients

Worker
Node 3

params v,

Worker continues with updated parameters

parameter
values (v2)

Parameter
Server

Stanford (5149, Winter 2019

Summary: asynchronous parameter update

m |dea: avoid global synchronization on all parameter updates

between each SGD iteration

- Algorithm design reflects realities of cluster computing:
- Slow interconnects
- Unpredictable machine performance

m Solution: asynchronous (and partial) subgradient updates

m Will impact convergence of SGD

- Node N working on iteration i may not have parameter values that result the
results of the /-7 prior SGD iterations

Stanford (5149, Winter 2019

Bottleneck?
What if there is heavy contention for parameter server?

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v1)

local
subgradients

parameter
values (v2)

Worker
Node 0

training data

local copy of
parameters (v0)

local
subgradients

Worker
Node 1

Worker
Node 2

training data

local copy of
parameters (v2)

local
subgradients

Worker
Node 3

Parameter
Server

Stanford (5149, Winter 2019

Shard the parameter server

Partition parameters across servers
Worker sends chunk of subgradients to owning parameter server

subgradient
training data training data (chunk 0) parameter
values
local copy of local copy of
(chunk 0)
parameters (v0) parameters (v1)
subgradients subgradients subgradient erver
hunk 1
Worker Worker (chunk 1) parameter
Node 0 Node 1
values
(chunk 1)
training data training data
local copy of local copy of Parameter
parameters (v0) parameters (v2) Server 1
local local
subgradients subgradients

Worker
Node 2

Worker
Node 3

Reduces data transmission load on individual servers
(less important: also reduces cost of parameter update)

Stanford (5149, Winter 2019

What if model parameters do not fit on one worker?

Recall high footprint of training large networks
(particularly with large mini-batch sizes)

training data training data parameter
local copy of local copy of values
(chunk 0)
parameters (v0) parameters (v1)
local local Parameter
subgradients subgradients server(
Worker Worker
Node 0 Node 1 parameter
values
(chunk 1)
training data training data
local copy of local copy of Parameter
parameters (v0) parameters (v2) Server 1
local local
subgradients subgradients

Worker
Node 2

Worker
Node 3

Stanford (5149, Winter 2019

Model parallelism

Partition network parameters across nodes

(spatial partitioning to reduce communication)

Reduce internode communication through network design:

Use small spatial convolutions (1x1 convolutions)
— Reduce/shrink fully-connected layers

N
1

224

224

N

L=

=

Stride
of 4

5 -

55

96

_

e

-

Max
pooling

—

communicate outputs near spatial partition

27

-\

27

384

256

Max
pooling

Convolutional layers: only need to

Worker
Node 0
13
13
256 4
Max
pooﬁng 4096 4096
\ | Worker
Node 1

Fully-connected layers:
all data owned by a node
must by communicated to

other nodes
Stanford (5149, Winter 2019

Data-parallel and model-parallel execution

Working on subgradient computation
for a single copy of the model

training data

local copy of
parameters (v1):
chunk 0

local
subgradients
chunk 0

Worker
Node 0

training data

local copy of
parameters (v0):
chunk 0

local

subgradients
chunk 0

Worker
Node 2

Fine-grained
communication of
layer outputs,
subgradients, etc.

C—)

Fine-grained
communication of
layer outputs,
subgradients, etc.

C—)

training data

local copy of

parameters (v1):

chunk 1

local
subgradients
chunk 1

parameter

values
(chunk 0)

Worker
Node 1

Parameter
Server (0

training data

local copy of

parameters (v0):

chunk 1

local
subgradients
chunk 1

parameter
values

(chunk 1)

Worker
Node 3

e I —————————
Working on subgradient computation

for a single copy of the model

Parameter
Server 1

Stanford (5149, Winter 2019

Asynchronous vs. synchronous debate

m Asynchronous training: significant distributed system

complexity incurred to combat bandwidth/latency constraints
of modern cluster computing

B |nterest in ways to improve scalability of synchronous training
- Better hardware

- Better algorithms for existing hardware

Stanford (5149, Winter 2019

Better hardware: using supercomputers for training

B Fastinterconnects critical for model-parallel training
- Fine-grained communication of outputs and gradients

B Fastinterconnects diminish need for async training algorithms

- Avoid randomness in training due to schedule of computation (there remains
randomness due to stochastic part of SGD algorithm)

IETEI3IF s SEzEsEzsE: s=z=z=z= secsesezucg: ¥

4 b " i
] ! e
A AR
R 2 3 B

& - o

_ m R gt S0 G é.\v*m mmﬁ/l .»' -
OakRidge Titan Supercomputer NVIDIA DGX-1: 8 GPUs connected via
(low-latency interconnect used in a high speed NV-Link interconnect
number of recent training papers) ($150,000 in 2018)

Stanford (5149, Winter 2019

Just the other day...

NVIDIA buys high-performance chip-
maker Mellanox for $6.9 billion

It beat Intel in a bid that will boost its server, self-driving and networking segments.

8 1552
Personal Computing

1,398 views | Mar 12, 2019, 06:14pm

NVIDIA Buys Mellanox To Bring
HPC Scaling To Data Centers

Kevin Krewell Contributor

Tirias Research Contributor Group
Enterprise & Cloud

The 2019 semiconductor merger and acquisition season has officially been
kicked off with a blockbuster $6.9B deal for networking chipset and
technology provider Mellanox. Graphic chip maker NVIDIA made the
offer after a number of companies, rumored to include Intel, Microsoft,
and Xilinx, had bid on buying the company. NVIDIA CEO Jenson Huang
said in an analyst call that Mellanox management had invited him to bid
on the company and he was happy to do so. By acquiring long-time data

center partner Mellanox, Jensen is doubling down on the high-

performance data center market.

Stanford (5149, Winter 2019

Modified algorithmic techniques (again):
improving scalability of synchronous training...

m Larger mini-batches increase computation-to-communication ratio:
communicate gradients summed over B training inputs

for each item x in mini-batch on this node:

grad += evaluate_loss _gradient(f, loss func, params, Xx)
barrier();

sum-reduce gradients across all nodes, communicate results to all nodes
barrier();

update copy of local parameter values

m But large mini-batches (if used naively) reduce accuracy of model
trained

Stanford (5149, Winter 2019

Accelerating data-parallel training siecreriandoia 16

m Use a high-performance Cray Gemini interconnect (Titan supercomputer)
m Use combining tree for accumulating gradients (rather than a single parameter server)
B Use larger batch size (to reduce frequency of communication) and offset by increasing

learning rate
Hardware] Net Epochs ~ Batch Initialeearning Train Spevedup Top-1 Top-5
size Rate time Accuracy Accuracy
Caffe 1 NVIDIA K20 GoogleNet 64 32 0.01 21 days 1x 68.3% 88.7%
[41]
FireCaffe 32 NVIDIA K20s (Titan GoogleNet 72 1024 0.08 23.4 20x 68.3% 88.7%
(ours) supercomputer) hours
FireCaffe 128 NVIDIA K20s (Titan GoogleNet 72 1024 0.08 10.5 47x 68.3% 88.7%
(ours) supercomputer) hours
Dataset: ImageNet 1K

Result: reasonable scalability without
asynchronous parameter update: for modern DNNs
with fewer weights such as GooglLeNet

(due to no fully connected layers)

100 ! I 1 1 1] T . M . ——r I
Q0 parameter server _e_
80 reduction tree
;8 Measuring communication only

o (if computation were free)

40
30
20
10

| | | | | | | | |
|]] |]]]]]

Weight gradient updates per second

.
| \l‘e_e——n-l_e_

2 4 8 16 32 64 128
Number of worker nodes

Stanford (5149, Winter 2019

[Goyal 2017]

Increasing learning rate with mini-batch size:

Ilnear Scallng rUIe size of mini batch=n
Recall: minibatch SGD parameter update SGD learning rate =7}
1
—w,— =S Vi(z,
W41 = Wy 77n q;g (7, wy)

Consider processing of k minibatches (k steps of gradient descent)

1
Wi — Wt — 775 Z Z vz(xawﬂ—j)

j</€ .CUEBj

Consider processing one minibatch that is of size kn (one step of gradient descent)

Wit] = Wy — ﬁ% Z Z Vi(z,w;)

j<kzxzeb;

Suggests thatif Vi(z,w;) ~ Vi(z,w.;) forj< kthen minibatch SGD with size n and
learning rate 7] can be approximated by large mini batch SGD with size kn if the
learning rate is also scaled to £77

Stanford (5149, Winter 2019

When does vi(z,w,) ~ Vi(z,w. ;) not hold?

1. Atbeginning of training T
- Suggests star.ting training vyith a5 | ResNet-50 Training
smaller learning rate (learning on 256 machines

rate “warmup”)

W
o
|

2. When minibatch size begins to get
too large (there is a limit to scaling

ImageNet top-1 validation error

25
minibatch size)
20 l l l l l l l l l |
64 128 256 512 1k 2k 4Kk 8k 16k 32k 64k
mini-batch size
100
90 | kn=256, n= 0.1, 23.60%+0.12| | | kn=256, n= 0.1, 23.60%+0.12| | | kn=256, n= 0.1, 23.60%+0.12|
kn= 8k, n= 3.2, 24.84%+t0.37 kn= 8k, m= 3.2, 25.88%+0.56 kn= 8k, m= 3.2, 23.74%+£0.09

80 r
2
§ 70
®
o 60
=
-

40

30 r

20 1 1 1 1 | | | | | | | |

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
epochs epochs epochs
(a) no warmup (b) constant warmup (¢) gradual warmup

[Figure credit: Goyal et al. 2017] Minibatch size = 256 (orange) vs. 8192 (blue) Stanford (5149, Winter 2019

Many cool ideas popping up

® Gradient compression

- Since the main source of communication is communicating gradients,

compress the gradients (or reduce the frequency of gradient update)

B Account of communication latency in SGD momentum calculations

Asynchronous execution means SGD continues forward (with potentially
stale gradients)

SGD with momentum has a similar effect (keep descending in the same
direction, don't directly follow gradient)

ldea: reduce momentum proportionally to latency of gradient update

Stanford (5149, Winter 2019

[Lin et al. ICLR 2018]

Example: "gradient compression”

m Each node computes gradients for minibatch, but only sends
gradients with magnitude above a threshold

B Locally accumulate gradients below threshold over multiple
SGD steps (then send when exceed threshold)

G =0
for all iterations t:
| N b
k o~k .
Gy =Gy TN Z Z Vf(z; we)
k=1 QZ‘EBk

Compress and send ONLY the elements of G’f greater than threshold.
(then locally zero out sent elements)

SGD update on each node only uses the sent weights.

Stanford (5149, Winter 2019

Summary: training large networks in parallel

® Data-parallel training with asynchronous update to efficiently use

clusters of commodity machines with low speed interconnect

- Modification of SGD algorithm to meet constraints of modern parallel systems
- Effects on convergence are problem dependent and not particularly well understood

- Efficient use of fast interconnects may provide alternative to these methods
(facilitate tightly orchestrated solutions much like supercomputing applications)

® Modern DNN designs, large minibatch sizes, careful learning rate
schedules enable scalability without asynchronous execution on
commodity clusters

B High-performance training of deep networks is an interesting example
of constant iteration of algorithm design and parallelization strategy
(a key theme of this course!)

Stanford (5149, Winter 2019

Course Wrap Up

(Students)

Stanford (5149, Winter 2019

For the foreseeable future, the primary way to obtain higher
performance computing hardware is through a combination of
increased parallelism and hardware specialization.

PolyMorph Engine 3.0
Vertex Fetch | | Tessellator | | Viewport Transform

Attribute Setup | | Stream Output

BURHRHRLIRIN

Instruction Cache

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispateh Unit Dispatch Unit Dispatch Unit
S 3 S o

;
i
3
i
L
»
-
’
.
) |

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

R
e i

>

Core Core Core Core Core Core

, Cyclone}g?l | /4

T

FPGA ,
(reconfigurable logic)

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

U H =
e En i o
Lp st omaniin ooy |
Ex {
4 4
!

GPU Core Pair 384 ' |

Texture / L1 Cache

Instruction Buffer Instruction Buffer g {

Warp Scheduler Warp Scheduler 1t

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
S . o e

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core | Core | Core L Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Texture [L1 Cache

Tex

96KE Shared Memory

= SRS SEE Apple A9
e R Heterogeneous SoC

NVIDIA Maxwell GPU

(single SMM core) . |
32 wide SIMD multi-core CPU + multi-

Intel Xeon Phi core GPU + media ASICs
72 cores, 16-wide SIMD, 4-way multi-threading 2048 CUDA/core threads per SMM

Stanford (5149, Winter 2019

Today’s software is surprisingly inefficient
compared to the capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get
more complex, and parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-
intensive fields (or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding how a parallel
machine works is important to achieving high performance.

A major challenge going forward is making it simpler for programmers to extract
performance on these complex machines.

Stanford (5149, Winter 2019

This Is very important given how exciting
(and efficiency-critical) the next generation of
computing applications are likely to be.

®
-~
o
7

‘3
4441
) — e -

s

Stanford (5149, Winter 2019

Key issues we have addressed In this course

|dentifying parallelism

(or conversely, identifying dependencies)

Efficiently scheduling parallelism

1. Achieving good workload balance

2. Overcoming communication constraints:

Bandwidth limits, dealing with latency, synchronization
Exploiting data/computation locality = efficiently managing state!

3. Scheduling under heterogeneity (using the right processor for the job)

We discussed these issues at many scales and in many contexts

Heterogeneous mobile SoC
Single chip, multi-core (PU
Multi-core GPU
CPU+GPU connected via bus
Clusters of machines
Large scale, multi-node supercomputers

Stanford (5149, Winter 2019

Key issues we have addressed In this course

Abstractions for thinking about efficient code

Data parallel thinking
Functional parallelism
Transactions

Tasks

How throughput-oriented hardware works

Multiple cores, hardware-threads, SIMD
Specialization

Stanford (5149, Winter 2019

After taking this course,
you are ready to try
undergraduate research
In parallel computing!

Why research (or independent study)?

® You will learn way more about a topic than in any class.

® You think your undergrad friends are very smart? Come hang out
with Stanford Ph.D. students! (you get to work side-by-side with
them and with faculty). Imagine what level you might rise to.

® |t's way more fun to be on the cutting edge. Industry might not
even know about what you are working on. (imagine how much
more valuable you are if you can teach them)

® |t widens your mind as to what is possible.

Stanford (5149, Winter 2019

Example: what my own Ph.D. students are

working on these days...

Generating efficient code from image processing or deep learning DSLs (Halide
Autoscheduler), and compiling these applications directly to FGPAs

Designing a new shading language for future real-time 3D graphics pipelines
(collaboration with NVIDIA)

Parallel computing platforms that make it simpler and more efficient to
analyzing large video collections (Scanner project: “Spark for video”)

Designing programming models for querying video collections (e.g, find frames
with “three people around a table” or where DNN1 disagrees with DNN2)

Designing more efficient DNNs to accelerate image processing on video

Stanford (5149, Winter 2019

Maybe you might like research and decide
you want to go to grad school

Pragmatic comment: Without question, the number one way to get
into a top grad school is to receive a strong letter of recommendation
from faculty members. You get that letter only from being part of a
research team for an extended period of time.

DWICletter: (“did well in class” letter) What you get when you ask for
a letter from a faculty member who you didn’t do research with, but
got an A’ in their class. This letter is essentially thrown out by the
Ph.D. admissions committee at good schools.

Stanford (5149, Winter 2019

A very good reference

CMU Professor Mor Harchol-Balter’s writeup:
“Applying to Ph.D. Programs in Computer Science”

http://www.cs.cmu.edu/~harchol/gradschooltalk.pdf

Stanford (5149, Winter 2019

Research is just one option...

(Despite what many of us biased faculty tell you,
there are many other good ones as well)

Why not start your own project?

Interested in applying computer science to a
problem that excites you? Give it a shot!

Like a topic enough to be your own boss?
Consider starting your own company.

Why go work for Google or Facebook when you
can start a company that beats them?

(yes, those are great jobs too!)

Stanford (5149, Winter 2019

Your professors encourage you to be brave and take risks.

You are lucky because you are extremely talented. The
cost of “messing up” for you is actually much less than for
other students because your backup plan is very good.

Be ambitious while at Stanford with opportunities
beyond just classes. If it doesn’t work out, you'll try
something else and you'll probably succeed... or end up
getting the good job you would have gotten anyway.

Stanford (5149, Winter 2019

s

™

¥

