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Professor classification task

4

Input: 
image of a professor

Output: 
probability of each of four possible labels 

Easy: 
Mean: 
Boring: 
Nerdy:

?? 
?? 
?? 
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance. 

f (image) 
“professor classifier”
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Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Input: 
image of a professor

Output: 
probability of label 

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

?? 
?? 
?? 
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance. 

Recall: large networks may have 
10’s-100’s of millions of parameters
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Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52

Network output
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Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

Ground truth 
(what the answer should be)

Network output
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Error (loss)

Easy: 
Mean: 
Boring: 
Nerdy:

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

Ground truth: 
(what the answer should be) Network output: *

0.26 
0.08 
0.14 
0.52

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (fj),  
   but I’m showing a probability distribution above for clarity 

Common example: softmax loss:
L = �log

 
efcP
j e

fj

!
Output of network 

for correct category

Output of network 
for all categories
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DNN training
Goal of training: learning good values of network parameters so that the network 
outputs the correct classification result for any input image 

Idea: minimize loss for all the training examples (for which the correct answer is known) 

Intuition: if the network gets the answer correct for a wide range of training examples, 
then hopefully it has learned parameter values that yield the correct answer for future 
images as well.

L =
X

i

Li (total loss for entire training set is sum of losses Li for each training example xi)
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Gradient descent
An idea as old as the hills:
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Intuition: gradient descent
Say you had a function f that contained hidden parameters p1 and p2:

And for some input xi, your training data says the function should output 0.

But for the current values of p1 and p2, it currently outputs 10.

And say I also gave you expressions for the derivative of f with 
respect to p1 and p2 so you could compute their value at xi.

How might you adjust the values p1 and p2 to reduce the error for this training example?

f(xi, p1, p2) = 10

p1

p2

red = high values of f 
blue = low values

rf = [2,�5]
df

dp1
= 2

df

dp2
= �5

f(xi)
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Basic gradient descent
while (loss too high): 
  for each epoch: // a pass through the training dataset 
     for each item x_i in training set: 
        grad = evaluate_loss_gradient(f, params, loss_func, x_i) 
        params += -grad * learning_rate;

Mini-batch stochastic gradient descent (mini-batch SGD): 
choose a random (small) subset of the training examples to use to compute the 
gradient in each iteration of the while loop

How do we compute dLoss/dp for a deep neural network with millions of parameters?

while (loss too high): 
  for each epoch: // a pass through the training dataset 
     for all mini batches in training set: 
       grad = 0; 
       for each item x_i in minibatch: 
          grad += evaluate_loss_gradient(f, params, loss_func, x_i) 
       params += -grad * learning_rate;
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SGD workload

while (loss too high): 

    
    
   for each item x_i in mini-batch: 
      grad += evaluate_loss_gradient(f, loss_func, params, x_i) 
      
    
    
    
   params += -grad * step_size;

At first glance, this loop is sequential (each step of 
“walking downhill” depends on previous)

Parallel across images

sum reduction
large computation with its own parallelism 
(but working set may not fit on single machine) 

trivial data-parallel over parameters
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DNN training workload
▪ Large computational expense 

- Must evaluate the network (forward and backward) for millions of training images 
- Must iterate for many iterations of gradient descent (100’s of thousands) 
- Training modern networks on big datasets takes days 

▪ Large memory footprint 
- Must maintain network layer outputs from forward pass 
- Additional memory to store gradients/gradient velocity for each parameter 
- Scaling to larger networks requires partitioning DNN across nodes to keep DNN + 

intermediates in memory 

▪ Dependencies /synchronization (not embarrassingly parallel) 
- Each parameter update step depends on previous 
- Many units contribute to same parameter gradients (fine-scale reduction) 
- Different images in mini batch contribute to same parameter gradients
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Synchronous data-parallel training (across images)
   for each item x_i in mini-batch: 
      grad += evaluate_loss_gradient(f, loss_func, params, x_i) 
   params += -grad * learning_rate;

Consider parallelization of the outer for loop across machines in a cluster

image  x0

parameter
gradients 
due to x0

Node 0 

copy of 
parameter 

values

image  x1

parameter
gradients 
due to x1

copy of 
parameter 

values

Node 1 

   partition dataset across nodes 
   for each item x_i in mini-batch assigned to local node: 
      // just like single node training 
      grad += evaluate_loss_gradient(f, loss_func, params, x_i) 
   barrier(); 
   sum reduce gradients, communicate results to all nodes 
   barrier(); 
   update copy of parameter values
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Synchronous training
▪ All nodes cooperate to compute gradients for a mini-batch * 

▪ Gradients are summed (across the entire machine) 
- All-to-all communication 
- Good implementations will sum gradients for layer i when computing 

backprop for i+1 (overlap communication and computation). 

▪ Update model parameters 
- Typically done without wide parallelism (e.g. each machine computes 

its own update)  

▪ All nodes proceed to work on next mini-batch given new model 
parameters

* If curious about batch norm in a parallel training setting. In practice each of k nodes works on a set of n 
images, with batch norm statistics computed independently for each set of n (mini-batch size is kn). 
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Challenges of scaling out (many nodes)
▪ Slow communication between nodes 

- Commodity clusters do not feature high-performance 
interconnects (e.g., infiniband) typical of supercomputers 

- Synchronous SGD involves all to all communication after each 
minibatch 

▪ Nodes with different performance (even if machines are the same) 
- Workload imbalance at barriers (sync points between nodes)

Alternative solution: exploit properties of SGD by 
using asynchronous execution
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Parameter server design

Worker 
Node 0 

Parameter 
Server

parameter 
values

Pool of worker nodes

Worker 
Node 1 

Worker 
Node 2 

Worker 
Node 3 

Google’s DistBelief [Dean NIPS12] 
Parameter Server [Li OSDI14] 
Microsoft’s Project Adam [Chilimbi OSDI14] 
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Training data partitioned among workers

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

x0 - x1000

x1000 - x2000

Worker 
Node 1 

x2000-3000

x3000-4000

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)
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Copy of parameters sent to workers

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

local copy of 
parameters (v0)

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)local copy of 

parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params v0

params v0

params v0

params v0
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Data parallelism: workers independently compute 
local “subgradients” on different pieces of data

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

parameter 
values (v0)

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Worker sends subgradient to parameter server

Worker 
Node 0 

Parameter 
Server

parameter 
values (v0)

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

subgradient

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Server updates global parameter values based on 
subgradient

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params += -subgrad * step_size;
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Updated parameters sent to worker 
Then worker proceeds with another gradient computation step

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

Notice:  

Node 1 is operating on different set of parameter 
values than other nodes 

Those parameter values were computed without 
gradient information from the other nodes

params v1
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Updated parameters sent to worker (again)

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

subgradient
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Worker continues with updated parameters

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

params v2
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Summary: asynchronous parameter update
▪ Idea: avoid global synchronization on all parameter updates 

between each SGD iteration 
- Algorithm design reflects realities of cluster computing: 

- Slow interconnects 
- Unpredictable machine performance 

▪ Solution: asynchronous (and partial) subgradient updates 

▪ Will impact convergence of SGD 
- Node N working on iteration i may not have parameter values that result the 

results of the i-1 prior SGD iterations
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Bottleneck?

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

What if there is heavy contention for parameter server?
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Shard the parameter server

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Partition parameters across servers 
Worker sends chunk of subgradients to owning parameter server

Parameter 
Server 1

parameter 
values 

(chunk 1)

subgradient 
(chunk 0)

subgradient 
(chunk 1)

Reduces data transmission load on individual servers 
(less important: also reduces cost of parameter update)
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What if model parameters do not fit on one worker?

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Parameter 
Server 1

parameter 
values 

(chunk 1)

Recall high footprint of training large networks 
(particularly with large mini-batch sizes) 



Stanford CS149, Winter  2019

Model parallelism

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Worker 
Node 0 

Worker 
Node 1 

Partition network parameters across nodes 
(spatial partitioning to reduce communication) 

Reduce internode communication through network design:  
- Use small spatial convolutions (1x1 convolutions)  
- Reduce/shrink fully-connected layers  

Convolutional layers: only need to 
communicate outputs near spatial partition 

Fully-connected layers: 
all data owned by a node 
must by communicated to 

other nodes
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Data-parallel and model-parallel execution

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients 

chunk 1

local 
subgradients 

chunk 0

local copy of 
parameters (v1): 

chunk 0

local copy of 
parameters (v1): 

chunk 1

Parameter 
Server 1

parameter 
values 

(chunk 1)

Working on subgradient computation 
for a single copy of the model

local copy of 
parameters (v0): 

chunk 0

local copy of 
parameters (v0): 

chunk 1
local 

subgradients 
chunk 1

local 
subgradients 

chunk 0

Working on subgradient computation 
for a single copy of the model

Fine-grained 
communication of 

layer outputs, 
subgradients, etc. 

Fine-grained 
communication of 

layer outputs, 
subgradients, etc. 
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Asynchronous vs. synchronous debate
▪ Asynchronous training: significant distributed system 

complexity incurred to combat bandwidth/latency constraints 
of modern cluster computing 

▪ Interest in ways to improve scalability of synchronous training 
- Better hardware 
- Better algorithms for existing hardware
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Better hardware: using supercomputers for training
▪ Fast interconnects critical for model-parallel training 

- Fine-grained communication of outputs and gradients 

▪ Fast interconnects diminish need for async training algorithms 
- Avoid randomness in training due to schedule of computation (there remains 

randomness due to stochastic part of SGD algorithm)

OakRidge Titan Supercomputer 
(low-latency interconnect used in a 
number of recent training papers)

NVIDIA DGX-1: 8 GPUs connected via 
high speed NV-Link interconnect 

($150,000 in 2018)
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Just the other day…
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Modified algorithmic techniques (again): 
improving scalability of synchronous training…

▪ Larger mini-batches increase computation-to-communication ratio: 
communicate gradients summed over B training inputs 
for each item x in mini-batch on this node:  
   grad += evaluate_loss_gradient(f, loss_func, params, x) 
barrier(); 
sum-reduce gradients across all nodes, communicate results to all nodes 
barrier(); 
update copy of local parameter values

▪ But large mini-batches (if used naively) reduce accuracy of model 
trained
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Accelerating data-parallel training
▪ Use a high-performance Cray Gemini interconnect (Titan supercomputer) 
▪ Use combining tree for accumulating gradients (rather than a single parameter server) 
▪ Use larger batch size (to reduce frequency of communication) and offset by increasing 

learning rate  

FireCaffe [Iandola 16]

to 21 days on a single GPU. Finally, on 128 GPUs, we achieve a 47x speedup over single-GPU GoogLeNet training, while
matching the single-GPU accuracy.

Table 3. Accelerating the training of ultra-deep, computationally intensive models on ImageNet-1k.
Hardware Net Epochs Batch

size
Initial Learning

Rate
Train
time

Speedup Top-1
Accuracy

Top-5
Accuracy

Caffe 1 NVIDIA K20 GoogLeNet
[41]

64 32 0.01 21 days 1x 68.3% 88.7%

FireCaffe
(ours)

32 NVIDIA K20s (Titan
supercomputer)

GoogLeNet 72 1024 0.08 23.4
hours

20x 68.3% 88.7%

FireCaffe
(ours)

128 NVIDIA K20s (Titan
supercomputer)

GoogLeNet 72 1024 0.08 10.5
hours

47x 68.3% 88.7%

8. Complementary approaches to accelerate DNN training

We have discussed related work throughout the paper, but we now provide a brief survey of additional techniques to
accelerate deep neural network training. Several of the following techniques could be used in concert with FireCaffe to
further accelerate DNN training.

8.1. Accelerating convolution on GPUs

In the DNN architectures discussed in this paper, more than 90% of the floating-point operations in forward and back-
ward propagation reside in convolution layers, so accelerating convolution is key to getting the most out of each GPU.
Recently, a number of techniques have been developed to accelerate convolution on GPUs. Unlike CPUs, NVIDIA GPUs
have an inverted memory hierarchy, where the register file is larger than the L1 cache. Volkov and Demmel [44] pioneered
a communication-avoiding strategy to accelerate matrix multiplication on GPUs by staging as much data as possible in reg-
isters while maximizing data reuse. Iandola et al. [23] extended the communication-avoiding techniques to accelerate 2D
convolution; and cuDNN [7] and maxDNN [30] extended the techniques to accelerate 3D convolution. FireCaffe can be
coupled with current and future GPU hardware and convolution libraries for further speedups.

8.2. Reducing communication among servers

Reducing the quantity of data communicated per batch is a useful way to increase the speed and scalability of DNN
training. There is an inherent tradeoff here: as gradients are more aggressively quantized, training speed goes up, but the
model’s accuracy may go down compared to a non-quantized baseline. While FireCaffe uses 32-bit floating-point values
for weight gradients, Jeffrey Dean stated in a recent keynote speech that Google often uses 16-bit floating-point values for
communication between servers in DNN training [11]. Along the same lines, Wawrzynek et al. used 16-bit weights and
8-bit activations in distributed neural network training [45]. Going one step further, Seide et al. used 1-bit gradients for
backpropagation, albeit with a drop in the accuracy of the trained model [37]. Finally, a related strategy to reduce communi-
cation between servers is to discard (and not communicate) gradients whose numerical values fall below a certain threshold.
Amazon presented such a thresholding strategy in a recent paper on scaling up DNN training for speech recognition [40].
However, Amazon’s evaluation uses a proprietary dataset, so it is not clear how this type of thresholding impacts the accuracy
compared to a well-understood baseline.

So far in this section, we have discussed strategies for compressing or quantizing data to communicate in distributed DNN
training. There has also been a series of studies on applying dimensionality reduction to DNNs once they have been trained.
Jaderberg et al. [26] and Zhang et al. [50] both use PCA to compress the weights of DNN models by up to 5x, albeit with
a substantial reduction in the model’s classification accuracy. Han et al. [20] use a combination of pruning, quantization,
and Huffman encoding to compress the weights of pretrained models by 35x with no reduction in accuracy. Thus far, these
algorithms have only been able to accelerate DNNs at test time.

9. Conclusions

Long training times impose a severe limitation on progress in deep neural network research and productization. Acceler-
ating DNN training has several benefits. First, faster DNN training enables models to be trained on ever-increasing dataset
sizes in a tractable amount of time. Accelerating DNN training also enables product teams to bring DNN-based products
to market more rapidly. Finally, there are a number of compelling use-cases for real-time DNN training, such as robot self-
learning. These and other compelling applications led us to focus on the problem of accelerating DNN training, and our work
has culminated in the FireCaffe distributed DNN training system.

10

Dataset: ImageNet 1K

Result: reasonable scalability without 
asynchronous parameter update: for modern DNNs 
with fewer weights such as GoogLeNet 
(due to no fully connected layers)

Measuring communication only  
(if computation were free) 

Figure 4. Comparing communication overhead with a parameter server vs. a reduction tree. This is for the Network-in-Network DNN
architecture, so each GPU worker contributes 30MB of gradient updates.

7. Evaluation of FireCaffe-accelerated training on ImageNet

In this section, we evaluate how FireCaffe can accelerate DNN training on a cluster of GPUs. We train GoogLeNet [41]
and Network-in-Network [32] on up to 128 GPU servers in the Titan supercomputer (described in Section 2), leveraging
FireCaffe’s reduction tree data parallelism (Section 6.2). We begin by describing our evaluation methodology, and then we
analyze the results.

7.1. Evaluation Methodology

We now describe a few practices that aid in comparing advancements in accelerating the training of deep neural networks.

1. Evaluate the speed and accuracy of DNN training on a publicly-available dataset.

In a recent study, Azizpour et al. applied DNNs to more than 10 different visual recognition challenge datasets, including
human attribute prediction, fine-grained flower classification, and indoor scene recognition [5]. The accuracy obtained by
Azizpour et al. ranged from 56% on scene recognition to 91% on human attribute prediction. As you can see, the accuracy
of DNNs and other machine learning algorithms depends highly on the specifics of the application and dataset to which they
are applied. Thus, when researchers report improvements in training speed or accuracy on proprietary datasets, there is no
clear way to compare the improvements with the related literature. For example, Baidu [46] and Amazon [40] recently pre-
sented results on accelerating DNN training. Amazon and Baidu2 each reported their training time numbers on a proprietary
dataset, so it’s not clear how to compare these results with the related literature. In contrast, we conduct our evaluation on a
publicly-available dataset, ImageNet-1k [13], which contains more than 1 million training images, and each image is labeled
as containing 1 of 1000 object categories. ImageNet-1k is a widely-studied dataset, so we can easily compare our accuracy,
training speed, and scalability results with other studies that use this data.

2. Report hyperparameter settings such as weight initialization, momentum, batch size, and learning rate.

Glorot et al. [18], Breuel [6], and Xu et al. [48] have each shown that seemingly-subtle hyperparameter settings such as
weight initialization can have a big impact on the speed and accuracy produced in DNN training. When training Network-
in-Network (NiN) [32], we initialize the weights with a gaussian distribution centered at 0, and we set the standard deviation
(std) to 0.01 for 1x1 convolution layers, and we use std=0.05 for other layers. For NiN, we initialize the bias terms to a
constant value of 0, we set the weight decay to 0.0005, and we set momentum to 0.9. These settings are consistent with the
Caffe configuration files released by the NiN authors [32].

Frustratingly, in Google’s technical reports on GoogLeNet [41, 25], training details such as batch size, momentum, and
learning rate are not disclosed. Fortunately, Wu et al. [47] and Guadarrama [19] each reproduced GoogLeNet and released
all the details of their training protocols. As in [19], we train GoogLeNet with momentum=0.9 and weight decay=0.0002, we

2Baidu evaluated their training times using proprietary dataset [46]. Baidu also did some ImageNet experiments, but Baidu did not report the training
time on ImageNet.

7
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Increasing learning rate with mini-batch size: 
linear scaling rule

ing the same level of accuracy as the 256 minibatch base-

line. While distributed synchronous SGD is now common-
place, no existing results show that validation accuracy can
be maintained with minibatches as large as 8192 or that such
high-accuracy models can be trained in such short time.

To tackle this unusually large minibatch size, we em-
ploy a simple and generalizable linear scaling rule to ad-
just the learning rate. While this guideline is found in ear-
lier work [21, 4], its empirical limits are not well under-
stood and informally we have found that it is not widely
known to the research community. To successfully apply
this rule, we present a new warmup strategy, i.e., a strategy
of using lower learning rates at the start of training [16], to
overcome early optimization difficulties. Importantly, not
only does our approach match the baseline validation error,
but also yields training error curves that closely match the

small minibatch baseline. Details are presented in §2.
Our comprehensive experiments in §5 show that opti-

mization difficulty is the main issue with large minibatches,
rather than poor generalization (at least on ImageNet), in
contrast to some recent studies [20]. Additionally, we show
that the linear scaling rule and warmup generalize to more
complex tasks including object detection and segmentation
[9, 30, 14, 27], which we demonstrate via the recently de-
veloped Mask R-CNN [14]. We note that a robust and suc-
cessful guideline for addressing a wide range of minibatch
sizes has not been presented in previous work.

While the strategy we deliver is simple, its successful
application requires correct implementation with respect to
seemingly minor and often not well understood implemen-
tation details within deep learning libraries. Subtleties in the
implementation of SGD can lead to incorrect solutions that
are difficult to discover. To provide more helpful guidance
we describe common pitfalls and the relevant implementa-
tion details that can trigger these traps in §3.

Our strategy applies regardless of framework, but
achieving efficient linear scaling requires nontrivial com-
munication algorithms. We use the recently open-sourced
Caffe2

1 deep learning framework and Big Basin GPU
servers [24], which operates efficiently using standard Eth-
ernet networking (as opposed to specialized network inter-
faces). We describe the systems algorithms that enable our
approach to operate near its full potential in §4.

The practical advances described in this report are help-
ful across a range of domains. In an industrial domain,
our system unleashes the potential of training visual mod-
els from internet-scale data, enabling training with billions
of images per day. In a research domain, we have found
it to simplify migrating algorithms from a single-GPU
to a multi-GPU implementation without requiring hyper-
parameter search, e.g. in our experience migrating Faster
R-CNN [30] and ResNets [16] from 1 to 8 GPUs.

1http://www.caffe2.ai

2. Large Minibatch SGD
We start by reviewing the formulation of Stochastic Gra-

dient Descent (SGD), which will be the foundation of our
discussions in the following sections. We consider super-
vised learning by minimizing a loss L(w) of the form:

L(w) =
1

|X|
X

x2X

l(x,w). (1)

Here w are the weights of a network, X is a labeled training
set, and l(x,w) is the loss computed from samples x 2 X
and their labels y. Typically l consists of a prediction loss
(e.g., cross-entropy loss) and a regularization loss on w.

Minibatch Stochastic Gradient Descent [31], usually re-
ferred to as simply as SGD in recent literature even though
it operates on minibatches, performs the following update:

wt+1 = wt � ⌘
1

n

X

x2B
rl(x,wt). (2)

Here B is a minibatch sampled from X and n = |B| is the
minibatch size. ⌘ is the learning rate and t is the iteration
index. Note that in practice we use momentum SGD; we
return to a discussion of momentum in §3.

2.1. Learning Rates for Large Minibatches
Our goal is to use large minibatches in place of small

minibatches while maintaining training and generalization

accuracy. This is of particular interest in distributed learn-
ing, because it can allow us to scale to multiple workers2 us-
ing simple data parallelism without reducing the per-worker
workload and without sacrificing model accuracy.

As we will show in comprehensive experiments, we
found that the following learning rate scaling rule is sur-
prisingly effective for a broad range of minibatch sizes:

Linear Scaling Rule: When the minibatch size is

multiplied by k, multiply the learning rate by k.

All other hyper-parameters (weight decay, momentum, etc.)
are kept unchanged. As we will show in §5, the above lin-

ear scaling rule can help us to not only match the accuracy
between using small and large minibatches, but equally im-
portantly, to largely match their training curves.

Interpretation. We present an informal discussion of the
linear scaling rule and why it may be effective. Consider
a network at iteration t with weights wt, and a sequence
of k minibatches Bj for 0  j < k each of size n. We
compare the effect of executing k SGD iterations with small

minibatches Bj and learning rate ⌘ versus a single iteration
with a large minibatch [jBj of size kn and learning rate ⌘̂.

2We use the terms ‘worker’ and ‘GPU’ interchangeably in this work, al-
though other implementations of a ‘worker’ are possible. ‘Server’ denotes
a set of 8 GPUs that does not require communication over a network.
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According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)
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According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)
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Recall: minibatch SGD parameter update

Consider processing of k minibatches (k steps of gradient descent)

size of mini batch = n 
SGD learning rate = ⌘

Consider processing one minibatch that is of size kn (one step of gradient descent)

Suggests that if                                                          for j < k then minibatch SGD with size n and 
learning rate       can be approximated by large mini batch SGD with size kn if the 
learning rate is also scaled to 

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)
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When does                                            not hold? 
1. At beginning of training 

- Suggests starting training with 
smaller learning rate (learning 
rate “warmup”) 

2. When minibatch size begins to get 
too large (there is a limit to scaling 
minibatch size)

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)
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Abstract

Deep learning thrives with large neural networks and

large datasets. However, larger networks and larger

datasets result in longer training times that impede re-

search and development progress. Distributed synchronous

SGD offers a potential solution to this problem by dividing

SGD minibatches over a pool of parallel workers. Yet to

make this scheme efficient, the per-worker workload must

be large, which implies nontrivial growth in the SGD mini-

batch size. In this paper, we empirically show that on the

ImageNet dataset large minibatches cause optimization dif-

ficulties, but when these are addressed the trained networks

exhibit good generalization. Specifically, we show no loss

of accuracy when training with large minibatch sizes up to

8192 images. To achieve this result, we adopt a linear scal-

ing rule for adjusting learning rates as a function of mini-

batch size and develop a new warmup scheme that over-

comes optimization challenges early in training. With these

simple techniques, our Caffe2-based system trains ResNet-

50 with a minibatch size of 8192 on 256 GPUs in one hour,

while matching small minibatch accuracy. Using commod-

ity hardware, our implementation achieves ⇠90% scaling

efficiency when moving from 8 to 256 GPUs. This system

enables us to train visual recognition models on internet-

scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 40, 33, 34, 35, 16], speech [17, 39], and natural lan-
guage processing [7, 37]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Im-
ageNet classification [32] and can be transferred to diffi-
cult perception problems such as object detection and seg-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-

ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

mentation [8, 10, 27]. Moreover, this pattern generalizes:
larger datasets and network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 40, 33, 34, 35, 16]. But as model and data
scale grow, so does training time; discovering the poten-
tial and limits of scaling deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility
of and to communicate a practical guide to large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] train-
ing, originally performed with a minibatch size of 256 im-
ages (using 8 Tesla P100 GPUs, training time is 29 hours),
to larger minibatches (see Figure 1). In particular, we
show that with a large minibatch size of 8192, using 256

GPUs, we can train ResNet-50 in 1 hour while maintain-
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Figure 2. Warmup. Training error curves for minibatch size 8192 using various warmup strategies compared to minibatch size 256.
Validation error (mean±std of 5 runs) is shown in the legend, along with minibatch size kn and reference learning rate ⌘.
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Figure 3. Training error vs. minibatch size. Training error curves for the 256 minibatch baseline and larger minibatches using gradual
warmup and the linear scaling rule. Note how the training curves closely match the baseline (aside from the warmup period) up through 8k
minibatches. Validation error (mean±std of 5 runs) is shown in the legend, along with minibatch size kn and reference learning rate ⌘.

8

ResNet-50 Training 
on 256 machines

Minibatch size = 256 (orange) vs. 8192 (blue) [Figure credit: Goyal et al. 2017]
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Many cool ideas popping up
▪ Gradient compression 

- Since the main source of communication is communicating gradients, 
compress the gradients (or reduce the frequency of gradient update) 

▪ Account of communication latency in SGD momentum calculations 

- Asynchronous execution means SGD continues forward (with potentially 
stale gradients) 

- SGD with momentum has a similar effect (keep descending in the same 
direction, don’t directly follow gradient) 

- Idea: reduce momentum proportionally to latency of gradient update
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Example: "gradient compression”
▪ Each node computes gradients for minibatch, but only sends 

gradients with magnitude above a threshold 

▪ Locally accumulate gradients below threshold over multiple 
SGD steps (then send when exceed threshold)

for all iterations t:

Compress and send ONLY the elements of              greater than threshold. 
(then locally zero out sent elements)

Gk
t

Gk
t = Gk

t�1 + ⌘
1

Nb

NX

k=1

bX

x2Bk

rf(x;wt)

Gk
0 = 0

SGD update on each node only uses the sent weights.

[Lin et al. ICLR 2018]
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Summary: training large networks in parallel

▪ Data-parallel training with asynchronous update to efficiently use 
clusters of commodity machines with low speed interconnect 
- Modification of SGD algorithm to meet constraints of modern parallel systems 
- Effects on convergence are problem dependent and not particularly well understood 
- Efficient use of fast interconnects may provide alternative to these methods 

(facilitate tightly orchestrated solutions much like supercomputing applications) 

▪ Modern DNN designs, large minibatch sizes, careful learning rate 
schedules enable scalability without asynchronous execution on 
commodity clusters 

▪ High-performance training of deep networks is an interesting example 
of constant iteration of algorithm design and parallelization strategy 
(a key theme of this course!)
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Course Wrap Up

(Students)
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For the foreseeable future, the primary way to obtain higher 
performance computing hardware is through a combination of 
increased parallelism and hardware specialization.

Intel Xeon Phi 
72 cores, 16-wide SIMD, 4-way multi-threading

NVIDIA Maxwell GPU 
(single SMM core) 

32 wide SIMD 
2048 CUDA/core threads per SMM

Apple A9 
Heterogeneous SoC 

multi-core CPU + multi-
core GPU + media ASICs

FPGA 
(reconfigurable logic)

GeForce GTX 980 Whitepaper 

GM204 HARDWARE ARCHITECTURE 

IN-DEPTH 
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from 32 to 64. Again, thanks to the added benefit of higher clocks, pixel fill-rate is actually more than 

double that of GTX 680: 72 Gpixels/sec for GTX 980 versus 32.2 Gpixels/sec for GTX 680. 

The memory subsystem has also been significantly revamped. GTX 980’s memory clock is over 15% 
higher than GTX 680, and GM204’s cache is larger and more efficient than Kepler’s design, reducing the 
number of memory requests that have to be made to DRAM. Improvements in our implementation of 

memory compression provide a further benefit in reducing DRAM traffic—effectively amplifying the raw 

DRAM bandwidth in the system.  

Maxwell Streaming Multiprocessor 

The SM is the heart of our GPUs. Almost 

every operation flows through the SM at 

some point in the rendering pipeline. 

Maxwell GPUs feature a new SM that’s 
been designed to provide dramatically 

improved performance per watt than prior 

GeForce GPUs.  

Compared to GPUs based on our Kepler 

architecture, Maxwell’s new SMM design 

has been reconfigured to improve 

efficiency. Each SMM contains four warp 

schedulers, and each warp scheduler is 

capable of dispatching two instructions per 

warp every clock. Compared to Kepler’s 
scheduling logic, we’ve integrated a 

number of improvements in the scheduler 

to further reduce redundant re-

computation of scheduling decisions, 

improving energy efficiency. We’ve also 
integrated a completely new datapath 

organization. Whereas Kepler’s SM shipped 
with 192 CUDA Cores—a non-power-of-two 

organization—the Maxwell SMM is 

partitioned into four distinct 32-CUDA core 

processing blocks (128 CUDA cores total 

per SM), each with its own dedicated 

resources for scheduling and instruction 

buffering. This new configuration in 

Maxwell aligns with warp size, making it 

easier to utilize efficiently and saving area 

Figure 3: GM204 SMM Diagram (GM204 also features 4 DP units per 
SMM, which are not depicted on this diagram) 

CPU 
core

CPU 
core

CPU 
core

CPU 
core

Integrated 
Gen9 GPU 

graphics + 
media

Intel Core i7 CPU + integrated GPU and media
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Today’s software is surprisingly inefficient 
compared to the capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get 
more complex, and parallel processing capability grows) 

Extracting this performance stands to provide a notable impact on many compute-
intensive fields (or, more importantly enable new applications of computing!) 

Given current software programming systems and tools, understanding how a parallel 
machine works is important to achieving high performance. 

A major challenge going forward is making it simpler for programmers to extract 
performance on these complex machines.
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This is very important given how exciting 
(and efficiency-critical) the next generation of 
computing applications are likely to be.
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Key issues we have addressed in this course

Identifying parallelism 
(or conversely, identifying dependencies) 

Efficiently scheduling parallelism 
1. Achieving good workload balance 

2. Overcoming communication constraints: 
Bandwidth limits, dealing with latency, synchronization 

Exploiting data/computation locality = efficiently managing state! 
3. Scheduling under heterogeneity (using the right processor for the job) 

We discussed these issues at many scales and in many contexts
Heterogeneous mobile SoC 
Single chip, multi-core CPU 

Multi-core GPU 
CPU+GPU connected via bus 

Clusters of machines 
Large scale, multi-node supercomputers
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Key issues we have addressed in this course

Abstractions for thinking about efficient code 
Data parallel thinking 
Functional parallelism 

Transactions 
Tasks 

How throughput-oriented hardware works 
Multiple cores, hardware-threads, SIMD 

Specialization 
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After taking this course, 
you are ready to try 

undergraduate research 
in parallel computing!
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Why research (or independent study)?
▪ You will learn way more about a topic than in any class. 

▪ You think your undergrad friends are very smart?  Come hang out 
with Stanford Ph.D. students! (you get to work side-by-side with 
them and with faculty).  Imagine what level you might rise to. 

▪ It’s way more fun to be on the cutting edge.  Industry might not 
even know about what you are working on.  (imagine how much 
more valuable you are if you can teach them) 

▪ It widens your mind as to what is possible.
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Example: what my own Ph.D. students are 
working on these days…
▪ Generating efficient code from image processing or deep learning DSLs (Halide 

Autoscheduler), and compiling these applications directly to FGPAs 

▪ Designing a new shading language for future real-time 3D graphics pipelines 
(collaboration with NVIDIA) 

▪ Parallel computing platforms that make it simpler and more efficient to 
analyzing large video collections (Scanner project: “Spark for video”) 

▪ Designing programming models for querying video collections (e.g, find frames 
with “three people around a table” or where DNN1 disagrees with DNN2) 

▪ Designing more efficient DNNs to accelerate image processing on video
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Maybe you might like research and decide 
you want to go to grad school

Pragmatic comment: Without question, the number one way to get 
into a top grad school is to receive a strong letter of recommendation 
from faculty members.  You get that letter only from being part of a 
research team for an extended period of time. 

DWIC letter: (“did well in class” letter)  What you get when you ask for 
a letter from a  faculty member who you didn’t do research with, but 
got an ‘A‘ in their class.  This letter is essentially thrown out by the 
Ph.D. admissions committee at good schools.
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A very good reference

CMU Professor Mor Harchol-Balter’s writeup: 
“Applying to Ph.D. Programs in Computer Science” 

http://www.cs.cmu.edu/~harchol/gradschooltalk.pdf
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Research is just one option… 

(Despite what many of us biased faculty tell you, 
there are many other good ones as well) 
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Why not start your own project?

Interested in applying computer science to a 
problem that excites you? Give it a shot! 

Like a topic enough to be your own boss? 
Consider starting your own company. 

Why go work for Google or Facebook when you 
can start a company that beats them? 

(yes, those are great jobs too!)



Stanford CS149, Winter  2019

You are lucky because you are extremely talented.  The 
cost of “messing up” for you is actually much less than for 
other students because your backup plan is very good.  

Be ambitious while at Stanford with opportunities 
beyond just classes. If it doesn’t work out, you’ll try 
something else and you’ll probably succeed... or end up 
getting the good job you would have gotten anyway.

Your professors encourage you to be brave and take risks.



Stanford CS149, Winter  2019

Thanks for being a great class! 

Good luck on your finals! 

See you a week from Friday! 

p.s. I enjoy receiving Spring Break postcards from students 
visiting amazing places.


