
Parallel Computing
Stanford CS149, Winter 2019

Lecture 16:

Domain-Specific
Programming Systems

Stanford CS149, Winter 2019

Power-constrained computing
▪ Moore’s law is failing and Dennard scaling is dead

- Power limits how many transistors you can turn on

▪ Supercomputers/Datacenters are power constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

▪ Mobile devices are power constrained
- Limited battery life
- Heat dissipation

Stanford CS149, Winter 2019

Computing system power

Power = EnergyOp ×
Ops
second

FIXED

Stanford CS149, Winter 2019

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is

compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Winter 2019

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

FPGA/
reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions
of dollars to design /

verify / create

Stanford CS149, Winter 2019

Heterogeneous processing for efficiency
▪ Heterogeneous parallel processing: use a mixture of computing

resources that fit mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-

specialized fixed-function processors
- Examples exist throughout modern computing: mobile processors, servers,

supercomputers

▪ Traditional rule of thumb in “good system design” is to design
simple, general-purpose components
- This is not the case in emerging systems (optimized for perf/watt)
- Today: want collection of components that meet perf requirement AND minimize

energy use

▪ Challenge of using these resources effectively is pushed up to the
programmer
- Current CS research challenge: how to write efficient, portable programs for

emerging heterogeneous architectures?

Stanford CS149, Winter 2019

Heterogeneous Parallel Programming Today

Sun
T2

Nvidia
Fermi

Cray
Jaguar

MPI
PGAS
Spark

Pthreads
OpenMP

CUDA
OpenCL

Altera
FPGA

Verilog
VHDL

Stanford CS149, Winter 2019

EXPERT PROGRAMMERS ⇒ LOW PRODUCTIVITY

Stanford CS149, Winter 2019

Expert Programming is Difficult

Optimizations:

• Precomputing twiddle

• Not computing what not part
of the filter

• Transposing the matrix

• Using SSE

~3 orders of
magnitude

Image Filter in OpenMP

Stanford CS149, Winter 2019

DSL Hypothesis

It is possible to write one program 
and 

run it efficiently on all these machines

Stanford CS149, Winter 2019

Domain Specific Languages
▪ Domain Specific Languages (DSLs)

- Programming language with restricted expressiveness for a particular
domain

- High-level, usually declarative, and deterministic

Stanford CS149, Winter 2019

Big-Data Analytics Programming Challenge

Multicore

GPU

Pthreads
OpenMP

CUDA
OpenCL

Predictive
Analytics

Data Prep

Data
Transform

Network
Analysis

Ideal Parallel
Programming

Language

Cluster
MPI

Map Reduce
Spark

FPGAVerilog
VHDL

Data Analytics
Application

Stanford CS149, Winter 2019

Performance

Productivity Generality

The Ideal Parallel Programming Language

Stanford CS149, Winter 2019

Successful Languages (not exhaustive ;-))

Performance

Productivity Generality

Stanford CS149, Winter 2019

Way Forward ⇒ Domain Specific Languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Stanford CS149, Winter 2019

High Performance DSLs for Data Analytics

Graph
Analysis

Prediction
Recommendation

Data
Transformation

Query Proc.
e.g. SQL Graph Alg. Machine

Learning
Data

Extraction

Applications

Domain
Specific

Languages

Heterogeneous
Hardware

DSL
Compiler

DSL
Compiler

DSL
Compiler

DSL
Compiler

Multicore GPU FPGA Cluster

Stanford CS149, Winter 2019

OptiML: Overview
▪ Provides a familiar (MATLAB-like) language and API for writing ML

applications
- Ex. val c = a * b (a, b are Matrix[Double])

▪ Implicitly parallel data structures
- Base types

- Vector[T], Matrix[T], Graph[V,E], Stream[T]

- Subtypes
- TrainingSet, IndexVector, Image, …

▪ Implicitly parallel control structures
- sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

- Allow anonymous functions with restricted semantics to be passed as arguments of the
control structures

Stanford CS149, Winter 2019

K-means Clustering in OptiML

untilconverged(kMeans, tol){kMeans =>
 val clusters = samples.groupRowsBy { sample =>
 kMeans.mapRows(mean => dist(sample, mean)).minIndex
 }
 val newKmeans = clusters.map(e => e.sum / e.length)
 newKmeans
}

calculate
distances to
current means

assign each
sample to the
closest mean

move each cluster centroid to the
mean of the points assigned to it

• No explicit map-reduce,
no key-value pairs

• No distributed data
structures (e.g. RDDs)

• No annotations for
hardware design

• Efficient multicore and
GPU execution

• Efficient cluster
implementation

• Efficient FPGA hardware

Stanford CS149, Winter 2019

Delite
DSL

Framework

Common DSL Infrastructure: Delite

Graph
Analysis

Prediction
Recommendation

Data
Transformation

Query Proc.
e.g. SQL Graph Alg. Machine

Learning
Data

Extraction

Applications

Domain
Specific

Languages

Heterogeneous
Hardware

DSL
Compiler

DSL
Compiler

DSL
Compiler

DSL
Compiler

Multicore GPU FPGA Cluster

Stanford CS149, Winter 2019

Delite: A Framework for High Performance DSLs

▪ Overall Approach: Generative Programming for “Abstraction without regret”

- Embed compilers in Scala libraries: Scala does syntax and type checking

- Use metaprogramming with LMS (type-directed staging) to build an
intermediate representation (IR) of the user program

- Optimize IR and map to multiple targets

▪ Goal: Make embedded DSL compilers easier to develop than stand alone DSLs
- As easy as developing a library

Stanford CS149, Winter 2019

Delite Overview

Key elements

- DSLs embedded in Scala

- IR created using type-directed staging

- Domain specific optimization

- General parallelism and locality
optimizations

- Optimized mapping to HW targets

D
SL

U
ser

Opti{Wrangler, QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI HDL

Generic analyses
 and

transformations

parallel data Parallel
patterns

D
elite Fram

ew
ork

K. J. Brown et. al., “A heterogeneous parallel
framework for domain-specific languages,”
PACT, 2011.

Domain specific
analyses and

transformations

D
SL

D
eveloper

domain data
domain ops

DSL 1

•••
domain data
domain ops

DSL n

Stanford CS149, Winter 2019

DSL Example:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

Stanford CS149, Winter 2019

Halide used in practice
▪ Halide used to implement Google Pixel Photos app

▪ Halide code used to process images uploaded to
Google Photos

Stanford CS149, Winter 2019

A quick tutorial on high-performance
image processing

Stanford CS149, Winter 2019

What does this C code do?
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Stanford CS149, Winter 2019

3x3 box blur

(Zoom view)

Stanford CS149, Winter 2019

3x3 image blur
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN filter: N2 x WIDTH x HEIGHT

Stanford CS149, Winter 2019

Two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is 30x30 blur, not 3x3)

A 2D separable filter (such as a box filter) can be evaluated
via two 1D filtering operations

Stanford CS149, Winter 2019

Two-pass 3x3 blur
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2X lower arithmetic intensity than 2D blur

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

Stanford CS149, Winter 2019

Two-pass image blur: locality
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Data from input reused three times. (immediately reused in next
two i-loop iterations after first load, never loaded again.)
- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three
rows of image data are accessed in between)
- Never load required data more than once… if

cache has capacity for three rows of image
- Perfect use of cache lines (don’t load unnecessary

data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image
and must write each element of output image.

Stanford CS149, Winter 2019

Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {

 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of tmp_buf
(only what’s needed for one
row of output)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_buffer are cached
(assuming tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate
buffer need to be allocated

Stanford CS149, Winter 2019

Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)Produce enough rows of
tmp_buf to produce a
CHUNK_SIZE number of
rows of output

Total work per chuck of output:
(assume CHUNK_SIZE = 16)

- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT
 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer
fits in cache
(capture all producer-
consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

Stanford CS149, Winter 2019

Still not done
▪ We have not parallelized loops for multi-core execution

▪ We have not used SIMD instructions to execute loops bodies

▪ Other basic optimizations: loop unrolling, etc…

Stanford CS149, Winter 2019

Optimized C++ code: 3x3 image blur
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector
intrinsics

Modified iteration order:
256x32 tiled iteration (to
maximize cache hit rate)

Multi-core execution
(partition image vertically)

two passes fused into one:
tmp data read from cache

🤔😱😩😭

 Stanford CS149, Winter 2019

Halide language
Simple domain-specific language embedded in C++ for describing sequences of
image processing operations
Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:800,0:600)
Halide::Buffer<uint8_t> result = out.realize(800, 600);

[Ragan-Kelley / Adams 2012]

Value of blurx at coordinate (x,y)
is given by expression accessing
three values of in

Functions map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain
Halide expression: a side-effect free expression that describes how to compute a
function’s value at a point in its domain in terms of the values of other functions.

 Stanford CS149, Winter 2019

Key aspects of representation
▪ Intuitive expression:

- Adopts local “point wise” view of expressing algorithms
- Halide language is declarative. It does not define order of

iteration, or what values in domain are stored!
- It only defines what operations are needed to compute

these values.
- Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 800x600
Halide::Buffer<uint8_t> result = out.realize(800, 600);

in

blurx

out

Stanford CS149, Winter 2019

Real-world image processing pipelines
feature complex sequences of functions

Two-pass blur
Unsharp mask
Harris Corner detection
Camera RAW processing
Non-local means denoising
Max-brightness filter
Multi-scale interpolation
Local-laplacian filter
Synthetic depth-of-field
Bilateral filter
Histogram equalization
VGG-16 deep network eval

2
9
13
30
13
9
52
103
74
8
7
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford CS149, Winter 2019

Key aspect in the design of any system:
Choosing the “right” representations for the job

Now the job is not expressing an image processing
computation, but generating an efficient

implementation of a specific Halide program.

 Stanford CS149, Winter 2019

A second set of representations for “scheduling”
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce elements blurx on demand for
each tile of output.
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to
schedule the algorithm onto a parallel machine, but leave the details of emitting the
low-level platform-specific code to the Halide compiler

 Stanford CS149, Winter 2019

Primitives for iterating over domains
Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

 Stanford CS149, Winter 2019

Specifying loop iteration order and parallelism
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

for y=0 to num_tiles_y: // parallelize this loop over multiple threads
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 // vectorize body of this loop with SIMD instructions
 for xi=0 to 256 by 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Halide compiler will generate this parallel, vectorized loop nest
for computing elements of out…

Given this schedule for the function “out”…
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

 Stanford CS149, Winter 2019

Primitives for how to interleave producer/
consumer processing
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_root();

allocate buffer for all of blur(x,y)
for y=0 to HEIGHT:
 for x=0 to WIDTH:
 blurx(x,y) = …

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Do not compute blurx within out’s loop nest.
Compute all of blurx, then all of out

all of blurx is computed here

values of blurx consumed here

 Stanford CS149, Winter 2019

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

 allocate 3-element buffer for tmp_blurx

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …

 out(idx_x, idx_y) = …

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, xi);
Compute necessary elements of blurx within
out’s xi loop nest

Primitives for how to interleave producer/
consumer processing

Note: Halide compiler performs
analysis that the output of each
iteration of the xi loop required 3
elements of blurx

 Stanford CS149, Winter 2019

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2:
 tmp_blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s x
loop nest (all necessary elements for one tile of out)

Primitives for how to interleave producer/
consumer processing

tile of blurx is
computed here

tile of blurx is consumed here

 Stanford CS149, Winter 2019

An interesting Halide schedule
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x)
blurx.compute_at(out, xi);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate 258x34 buffer for tile tmp_blurx

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …

 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s xi loop
nest, but fill in tile-sized buffer allocated at x loop nest.

Can compiler be smarter?

 Stanford CS149, Winter 2019

“Sliding optimization” (reduces redundant computation)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x)
blurx.compute_at(out, xi);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 allocate 258x34 buffer for tile tmp_blurx

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 if (yi=0) {
 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …
 } else
 // only compute one additional element of tmp_blurx

 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s xi loop
nest, but fill in tile-sized buffer allocated at x loop nest.

Steady state: only one new
element of tmp_blurx needs to
be computed per output

 Stanford CS149, Winter 2019

“Folding optimization” (reduces intermediate storage)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x)
blurx.compute_at(out, xi);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 allocate 3x256 buffer for tmp_blurx

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 if (yi=0) {
 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …
 } else
 // only compute one additional element of tmp_blurx

 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s xi loop
nest, but fill in tile-sized buffer allocated at x loop nest.

Steady state: only one new
element of tmp_blurx needs to
be computed per output

Circular buffer of 3 rows

Accesses to tmp_blurx modified to access appropriate
row of circular buffer: e.g., ((idx_y+1)%3)

 Stanford CS149, Winter 2019

Summary of scheduling the 3x3 box blur
// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2 BY 8:
 tmp_blurx(xi,yi) = … // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8
 for yi=0 to 32:
 for xi=0 to 256 BY 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = … // compute out from blurx using 8-wide
 // SIMD instructions here

Equivalent parallel loop nest:

 Stanford CS149, Winter 2019

What is the philosophy of Halide
▪ Programmer is responsible for describing an image processing algorithm

▪ Programmer has knowledge to schedule application efficiently on
machine (but it’s slow and tedious), so give programmer a language to
express high-level scheduling decisions

- Loop structure of code

- Unrolling / vectorization / multi-core parallelization

▪ The system (Halide compiler) is not smart, it provides the service of
mechanically carrying out the details of the schedule in terms of
mechanisms available on the target machine (phthreads, AVX intrinsics,
etc.)

- There are two major examples of deviation from this philosophy. What
are they?

 Stanford CS149, Winter 2019

Constraints on language
(to enable compiler to provide desired services)

▪ Application domain scope: computation on regular N-D domains

▪ Only feed-forward pipelines (includes special support for
reductions and fixed recursion depth)

▪ All dependencies inferable by compiler

 Stanford CS149, Winter 2019

Initial academic Halide results
▪ Camera RAW processing pipeline

(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned
ARM NEON assembly

- Halide: 2.75x less code, 5% faster

▪ Bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

 Stanford CS149, Winter 2019

Halide used in practice
▪ Halide used to implement camera processing

pipelines on Google phones

- HDR+, aspects of portrait mode, etc…

▪ Industry usage at Instagram, Adobe, etc.

 Stanford CS149, Winter 2019

Stepping back: what is Halide?
▪ Halide is a DSL for helping expert developers optimize image

processing code more rapidly
- Halide does not decide how to optimize a program for a novice

programmer

- Halide provides primitives for a programmer (that has strong
knowledge of code optimization) to rapidly express what optimizations
the system should apply

- Halide compiler carries out the nitty-gritty of mapping that strategy to
a machine

 Stanford CS149, Winter 2019

Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the

ability to write good Halide schedules
- 80+ programmers at Google write Halide

- Very small number trusted to write schedules

▪ Recent work: compiler analyzes the Halide program to
automatically generate efficient schedules for the
programmer [optional reading: Mullapudi 2016]

Stanford CS149, Winter 2019

Darkroom/Rigel
Goal: directly synthesize FGPA implementation of image processing
pipelines from a high-level description
(a constrained “Halide-like” language)

[Hegarty 2014, Hegarty 2016]

Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines

James Hegarty John Brunhaver Zachary DeVito Jonathan Ragan-Kelley† Noy Cohen Steven Bell

Artem Vasilyev Mark Horowitz Pat Hanrahan

Stanford University †MIT CSAIL

Line-buffered pipeline

ISP

Corner Detection

Edge Detection

bx#=#im(x,y)#
##(I(x,1,y)#+#
###I(x,y)#+#
###I(x+1,y))/3#
end
by#=#im(x,y)#
##(bx(x,y,1)#+#
###bx(x,y)#+#
###bx(x,y+1))/3
end
sharpened#=#im(x,y)#
##I(x,y)#+#0.1*
##(I(x,y)#,#by(x,y))#
end Stencil Language

FPGA

ASIC

CPU

Darkroom

Corner Detection

Darkroom

Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm2 of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.

CR Categories: B.6.3 [Logic Design]: Design Aids—Automatic
Synthesis; I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.4.0 [Image Processing and Computer
Vision]: General—Image Processing Software

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.

Links: DL PDF WEB

1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000⇥ more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000⇥ more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly

Seeking very-high efficiency image processing

Stanford CS149, Winter 2019

Many other recent domain-specific programming systems

DSL for graph-based machine learning computationsLess domain specific than examples given today,
but still designed specifically for:
data-parallel computations on big data for
distributed systems (“Map-Reduce”)

Model-view-controller paradigm for
web-applications

Also see Ligra
(DSLs for describing operations on graphs)

Languages for physical simulation: Simit [MIT], Ebb [Stanford]
Opt: a language for non-linear least squares optimization [Stanford]

Ongoing efforts in many domains...

Language for real-time 3D graphics

DSL for defining deep neural
networks and training/inference
computations on those networks

Numerical computing

Stanford CS149, Winter 2019

Summary
▪ Modern machines: parallel and heterogeneous

- Only way to increase compute capability in energy-constrained world

▪ Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning efforts are not portable across machines

▪ Domain-specific programming environments trade-off
generality to achieve productivity, performance, and portability
- Case study today: Halide
- Leverage explicit dependencies, domain restrictions, domain knowledge for

system to synthesize efficient implementations

Stanford CS149, Winter 2019

Another DSL example: (only if time in class)
Lizst: a language for solving PDE’s on meshes

http://liszt.stanford.edu/

[DeVito et al. Supercomputing 11, SciDac ’11]

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu

What a Liszt program does

val Position = FieldWithConst[Vertex,Float3](0.f, 0.f, 0.f)
val Temperature = FieldWithConst[Vertex,Float](0.f)
val Flux = FieldWithConst[Vertex,Float](0.f)
val JacobiStep = FieldWithConst[Vertex,Float](0.f)

Color key:
Fields
Mesh entity H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

A Liszt program is run on a mesh
A Liszt program defines, and computes the value of, fields defined on the mesh

 Stanford CS149, Winter 2019

Side note:
Fields are a higher-kinded type
(special function that maps a type to a new type)

Position is a field defined at each mesh vertex.
The field’s value is represented by a 3-vector.

Liszt program: heat conduction on mesh

var i = 0;
while (i < 1000) {
 Flux(vertices(mesh)) = 0.f;
 JacobiStep(vertices(mesh)) = 0.f;
 for (e <- edges(mesh)) {
 val v1 = head(e)
 val v2 = tail(e)
 val dP = Position(v1) - Position(v2)
 val dT = Temperature(v1) - Temperature(v2)
 val step = 1.0f/(length(dP))
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 JacobiStep(v1) += step
 JacobiStep(v2) += step
 }
 i += 1
}

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Program computes the value of fields defined on meshes

 Stanford CS149, Winter 2019

Color key:
Fields
Mesh
Topology functions
Iteration over set

Set flux for all vertices to 0.f;

Independently, for each
edge in the mesh

Access value of field
at mesh vertex v2Given edge, loop body accesses/modifies field

values at adjacent mesh vertices

Stanford CS149, Winter 2019

Liszt’s topological operators
Used to access mesh elements relative to some input vertex, edge, face, etc.
Topological operators are the only way to access mesh data in a Liszt program
Notice how many operators return sets (e.g., “all edges of this face”)

Stanford CS149, Winter 2019

Liszt programming
▪ A Liszt program describes operations on fields of an abstract mesh

representation

▪ Application specifies type of mesh (regular, irregular) and its topology

▪ Mesh representation is chosen by Liszt (not by the programmer)
- Based on mesh type, program behavior, and target machine

Well, that’s interesting. I write a program, and the compiler decides
what data structure it should use based on what operations my code
performs.

Stanford CS149, Winter 2019

Compiling to parallel computers
Recall challenges you have faced in your assignments

1. Identify parallelism
2. Identify data locality
3. Reason about what synchronization is required

Now consider how to automate this process in the Liszt compiler.

Stanford CS149, Winter 2019

Key: determining program dependencies
1. Identify parallelism

- Absence of dependencies implies code can be executed in parallel

2. Identify data locality
- Partition data based on dependencies

3. Reason about required synchronization
- Synchronization is needed to respect dependencies (must wait until the

values a computation depends on are known)

In general programs, compilers are unable to infer dependencies at global scale:

Consider: a[f(i)] += b[i];
(must execute f(i) to know if dependency exists across loop iterations i)

Stanford CS149, Winter 2019

Statically analyze code to find stencil of each top-level for loop
- Extract nested mesh element reads
- Extract field operations

for (e <- edges(mesh)) {
 val v1 = head(e)
 val v2 = tail(e)
 val dP = Position(v1) - Position(v2)
 val dT = Temperature(v1) - Temperature(v2)
 val step = 1.0f/(length(dP))
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 JacobiStep(v1) += step
 JacobiStep(v2) += step
}
…

e in
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis
Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop

 = dependencies for the iteration

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Edge 6’s read stencil is D and F

Stanford CS149, Winter 2019

Restrict language for dependency analysis
Language restrictions:

- Mesh elements are only accessed through built-in topological functions:
cells(mesh), …

- Single static assignment: (immutable values)
val v1 = head(e)

- Data in fields can only be accessed using mesh elements:
 Pressure(v)
- No recursive functions

Restrictions allow compiler to automatically infer stencil for a
loop iteration

Stanford CS149, Winter 2019

Portable parallelism: compiler uses knowledge of
dependencies to implement different parallel
execution strategies

I’ll discuss two strategies…

Strategy 1: mesh partitioning

Strategy 2: mesh coloring
Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color

Stanford CS149, Winter 2019

Imagine compiling a Lizst program to a cluster
(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?

Distributed memory implementation of Liszt
Mesh + Stencil → Graph → Partition

 Stanford CS149, Winter 2019

for(f <- faces(mesh)) {
 rhoOutside(f) =
 calc_flux(f, rho(outside(f))) +
 calc_flux(f, rho(inside(f)))
}

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)

 Stanford CS149, Winter 2019

Ghost
Cells

Each processor also needs data for neighboring cells to
perform computation (“ghost cells”)
Listz allocates ghost region storage and emits required
communication to implement topological operators.

Stanford CS149, Winter 2019

Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)

GPU implementation: parallel reductions

 Stanford CS149, Winter 2019

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for (e <- edges(mesh)) {
 …
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 …
}

Different edges share a vertex: requires
atomic update of per-vertex field data

In previous example, one region of mesh assigned per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Edges (each edge assigned to 1 CUDA thread)

Flux field values (stored per vertex)

GPU implementation: conflict graph

 Stanford CS149, Winter 2019

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes
(lines in graph indicate presence of collision)

Can simply run program once to get this
information.
(results remain valid for subsequent
executions provided mesh does not change)

Edges (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

 Stanford CS149, Winter 2019

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: conflict graph

“Color” nodes in graph such that no
connected nodes have the same color

Can execute on GPU in parallel, without
atomic operations, by running all nodes with
the same color in a single CUDA launch.

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)

 Stanford CS149, Winter 2019

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown)
But uses a different algorithm when compiled to GPU! (graph coloring)

Stanford CS149, Winter 2019

Liszt summary
▪ Productivity

- Abstract representation of mesh: vertices, edges, faces, fields
(concepts that a scientist thinks about already!)

- Intuitive topological operators

▪ Portability
- Same code runs on large cluster of CPUs and GPUs (and combinations thereof!)

▪ High performance
- Language is constrained to allow compiler to track dependencies
- Used for locality-aware partitioning (distributed memory implementation)
- Used for graph coloring to avoid sync (GPU implementation)
- Compiler chooses different parallelization strategies for different platforms
- System can customize mesh representation based on application and platform

(e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays vs.
array of structs for per-vertex fields)

