
Parallel Computing
Stanford CS149, Winter 2019

Lecture 15:

TM & Heterogeneous Parallelism
and Hardware Specialization

Stanford CS149, Winter 2019

An Example STM Algorithm
▪ Based on Intel�s McRT STM [PPoPP�06, PLDI�06, CGO�07]

- Eager versioning, optimistic reads, pessimistic writes

▪ Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits
- Local timestamp per xaction

- Global timestamp value when xaction last validated

▪ Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked

Stanford CS149, Winter 2019

STM Operations
▪ STM read (optimistic)

- Direct read of memory location (eager)
- Validate read data (check for conflicts)

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

▪ STM write (pessimistic)
- Validate data (check for conflicts)

- Check if unlocked and data version ≤ local timestamp
- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)

Stanford CS149, Winter 2019

STM Operations (cont)

▪ Read-set validation

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

▪ STM commit

- Atomically increment global timestamp by 2 (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp

Stanford CS149, Winter 2019

STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

}

X1
atomic {
t1 = bar.x;
t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

▪ X1 copies object foo into object bar
▪ X2 should read bar as [0,0] or [9,7]

Stanford CS149, Winter 2019

STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

}

X1
atomic {
t1 = bar.x;
t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp

Stanford CS149, Winter 2019

Challenges for STM Systems
▪ Overhead of software barriers

▪ Function cloning

▪ Robust contention management

▪ Memory model (strong Vs. weak atomicity)

Stanford CS149, Winter 2019

Optimizing Software Transactions

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

tmTxnBegin()
tmWr(&a.x, t1)
tmWr(&a.y, t2)
if (tmRd(&a.z) != 0) {

tmWr(&a.x, 0);
tmWr(&a.z, t3)

}
tmTxnCommit()

nMonolithic barriers hide redundant logging & locking from the compiler

Stanford CS149, Winter 2019

Optimizing Software Transactions

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnOpenForWrite(a)
txnLogObjectInt(&a.y, a)
a.y = t2
txnOpenForRead(a)
if(a.z != 0) {
txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = 0
txnOpenForWrite(a)
txnLogObjectInt(&a.z, a)
a.z = t3
}

n Decomposed barriers expose redundancies

Stanford CS149, Winter 2019

Optimizing Software Transactions

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnLogObjectInt(&a.y, a)
a.y = t2
if (a.z != 0) {

a.x = 0
txnLogObjectInt(&a.z, a)
a.z = t3

}

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

n Allows compiler to optimize STM code
n Produces fewer & cheaper STM operations

Stanford CS149, Winter 2019

Compiler Optimizations for STM
▪ Standard compiler optimizations

- CSE, PRE, dead-code elimination, …
- Assuming IR supports TM, few compiler mods needed

▪ STM-specific optimizations
- Partial inlining of barrier fast paths

- Often written in optimized assembly
- No barriers for immutable and transaction local data

▪ Impediments to optimizations
- Support for nested transactions
- Dynamically linked STM library
- Dynamic tuning of STM algorithm

Stanford CS149, Winter 2019

Effect of Compiler Optimizations

▪ 1 thread overheads over thread-unsafe baseline

▪ With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization

Stanford CS149, Winter 2019

Function Cloning
n Problem: need two version of functions

n One with and one without STM instrumentation

n Managed languages (Java, C#)
n On demand cloning of methods using JIT

n Unmanaged languages (C, C++)
n Allow programmer to mark TM and pure functions
n TM functions should be cloned by compiler
n Pure functions touch only transaction-local data
§ No need for clones

n All other functions handled as irrevocable actions
n Some overhead for checks and mode transitions

Stanford CS149, Winter 2019

STM Efficiency
▪ Old question: what is the overhead of STM?
- 1.3x – 6x

▪ New question: what is the performance of a well engineered system using STM vs. a
well engineered system using fine-grained locks?
- Use STM aware data structures
- They don’t rely on STM, but play nicely with STM

- Use STM to compose these data structures
- Nathan Bronson

Transactional Predication: High-Performance Concurrent Sets and Maps for STM
Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun
PODC '10: Proceedings of the 29th Annual ACM Conference on Principles of Distributed Computing, July 2010.

Stanford CS149, Winter 2019

Lock manager inside Apache�s Derby SQL Database

▪ Row-level locks
- Multiple lock modes
- Tricky conflict and queue logic
- Automatic deadlock cycle detection
- Per-row, per-txn, and per-group operations

▪ Using ConcurrentHashMaps + fine-grained locks
- 2204 non-comment lines of Java
- 128 lines of discussion to prove that new code is thread safe!

- Informal proof that the deadlock detector is not itself subject to deadlock!

▪ Using STM + HashTrieTxnMaps
- 418 non-comment lines of Scala
- A number of corner cases avoided (races, timeouts, etc.)

Stanford CS149, Winter 2019

Performance Comparison (Read Heavy)

Stanford CS149, Winter 2019

TM Implementation Summary 1

▪ TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, …

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)

Profs. Olukotun/Zaharia CS 149 Lecture 6 17

Stanford CS149, Winter 2019

Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming
n Long term issue: energy wasteful

n Lack of strong atomicity
n Costly to provide purely in software

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

Stanford CS149, Winter 2019

Why is STM Slow?
▪ Measured single-thread STM performance

▪ 1.8x – 5.6x slowdown over sequential

▪ Most time goes in read barriers & validation
- Most apps read more data than they write

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

kmeans

Ex
ec

ut
io

n
T
im

e
(n

or
m
al

iz
ed

 t
o

se
qu

en
ti
al

)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

Stanford CS149, Winter 2019

Types of Hardware Support
▪ Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)

- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

▪ Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW
- No SW barriers

▪ Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, …

Write versioning HW SW SW

Conflict detection HW SW HW

Stanford CS149, Winter 2019

HTM Performance Example

n 2x to 7x over STM performance
n Within 10% of sequential for one thread
n Scales efficiently with number of processors

n Uncommon cases not a performance challenge

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

HTM

Stanford CS149, Winter 2019

Hardware transactional memory (HTM)

▪ Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

▪ Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

▪ Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)

Stanford CS149, Winter 2019

▪ Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

▪ Coherence requests check R/W bits to detect conflicts
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction

Stanford CS149, Winter 2019

Example HTM implementation: lazy-optimistic

▪ CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers

Stanford CS149, Winter 2019

CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

▪ Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D

Stanford CS149, Winter 2019

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

▪ Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D

Stanford CS149, Winter 2019

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D

Stanford CS149, Winter 2019

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D

Stanford CS149, Winter 2019

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

▪ Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D

Stanford CS149, Winter 2019

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

▪ Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1

Stanford CS149, Winter 2019

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

▪ Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from
another core’s commit

(remote core’s write of A
conflicts with local read of A:
triggers abort of pending
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D

Stanford CS149, Winter 2019

Hardware transactional memory support in
Intel Haswell architecture
▪ New instructions for “restricted transactional memory” (RTM)

- xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock

- xend
- xabort

- Implementation: tracks read and write set in L1 cache

▪ Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

Stanford CS149, Winter 2019

Summary: transactional memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol

Stanford CS149, Winter 2019

I want to begin this prat of the lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel
implementation of a compute-bound application is about 40 times

faster on my quad-core laptop than the output of single-threaded C code
compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is,
even if you are using it as efficiently as possible.

Stanford CS149, Winter 2019

You need to buy a
new computer…

Stanford CS149, Winter 2019

You need to buy a computer system

Core Core

Core Core
Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.
Which do you pick?

Stanford CS149, Winter 2019

Recall Amdahl’s law

f = fraction of program that is parallelizable
n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto n processors of equal capability

Stanford CS149, Winter 2019

Rewrite Amdahl’s law in terms of resource limits

f = fraction of program that is parallelizable
n = total processing resources (e.g., transistors on a chip)
r = resources dedicated to each processing core,

(each of the n/r cores has sequential performance perf(r)

Two examples where n=16
rA = 4
rB = 1

Speedup relative to processor with 1 unit of
resources, n=1
Assume perf(1) = 1

[Hill and Marty 08]

More general form of
Amdahl’s Law in terms
of f, n, r

Stanford CS149, Winter 2019

Speedup (relative to n=1)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload
Each graph plots performance as resource allocation changes, but total chip
resources resources are kept the same (constant n per graph)

perf(r)modeled as

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Figure credit: Hill and Marty 08]

11

Stanford CS149, Winter 2019

Asymmetric set of processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example: n=16
One core: r = 4
Other 12 cores: r = 1

(of heterogeneous processor with n
resources, relative to uniprocessor with
one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

[Hill and Marty 08]

Stanford CS149, Winter 2019

Speedup (relative to n=1)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r= 1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

(chip from prev. slide)

[Source: Hill and Marty 08]

Stanford CS149, Winter 2019

Heterogeneous processing
Observation: most “real world” applications have complex
workload characteristics

They have components that can
be widely parallelized.

And components that are
difficult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control flow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

Idea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job”)

Stanford CS149, Winter 2019

Examples of heterogeneity

Stanford CS149, Winter 2019

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators

CPU
core

CPUcore CPUcore

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers)

Stanford CS149, Winter 2019

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

▪ CPU cores and graphics cores share
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between
CPU and integrated GPU

▪ Graphics cores are cache coherent
with CPU cores

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics +
media

Shared LLC

System
Agent

(display,
memory,

I/O)

Stanford CS149, Winter 2019

More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics

Stanford CS149, Winter 2019

15in Macbook Pro /w Touch Bar (2016)

From ifixit.com teardown

AMD Radeon 450 Pro GPU

Quad-core Intel Core i7 CPU
(“Skylake”)
(contains integrated GPU)

(two GPUs)

Stanford CS149, Winter 2019

Mobile heterogeneous processors

Apple A11 Bionic *
Two “high performance” 64 bit ARM CPU cores
Four “low performance” ARM CPU cores
Three “core” Apple-designed GPU
Image processor
Neural Engine for DNN acceleration
Motion processor

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A11 image credit: TechInsights Inc.’
* Disclaimer: estimates by TechInsights, not an official Apple reference.

Stanford CS149, Winter 2019

Supercomputers use heterogeneous processing
Los Alamos National Laboratory: “Roadrunner”
Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS
Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as “accelerator” to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatt (about 2,400 average US homes)

Stanford CS149, Winter 2019

GPU-accelerated supercomputing

Summit (at Oak Ridge National Lab)
(world’s #1 in Fall 2018)
9,216 IBM Power9 22-core CPUs
27,648 NVIDIA V100 GPUs
10 Petabytes DRAM

Stanford CS149, Winter 2019

Intel Xeon Phi (Knights Landing)
▪ 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)
▪ 16-wide vector instructions (AVX-512), four threads per core
▪ Targeted as an accelerator for supercomputing applications

Stanford CS149, Winter 2019

Heterogeneous architectures for supercomputing
201 Petaflops (peak),
143 Petaflops (effective)
9.7 MWatt
(14.6 GFLOPS/W)

Source: Top500.org Fall 2018 rankings

Xeon Phi

GPU

GPU

GPU

GPU

Stanford CS149, Winter 2019

Green500: most energy efficient supercomputers

Source: Green500 Fall 2018 rankings

Efficiency metric: effective GFLOPS per Watt

Stanford CS149, Winter 2019

Energy-constrained computing
▪ Supercomputers are energy constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

Stanford CS149, Winter 2019

Energy-constrained computing

Stanford CS149, Winter 2019

Efficiency benefits of compute specialization

▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute

bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Winter 2019

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Winter 2019

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Winter 2019

Contrast that complexity to the circuit
required to actually perform the operation

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Example: 8-bit logical OR

Stanford CS149, Winter 2019

GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-specific, fixed-

function compute resources

Stanford CS149, Winter 2019

Neural Networks: Many Applications

>> 61

Computer Vision

CNNs

Object Detection
Semantic Segmentation Image Classification

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Speech Recognition

RNNs, LSTMs
Speech

Recognition

Speaker

Diarization

Others

Natural Language Processing

Sequence to sequence
Sentiment AnalysisTranslation

Recommender GamePlay

Many more emerging…

Stanford CS149, Winter 2019

Overview of Deep Neural Networks
▪ A DNN emulates the behavior of multiple connected neurons

62

Synapse

Stanford CS149, Winter 2019

Overview of Deep Neural Networks
63

▪ Each synapse has a weight for neuron activation

Stanford CS149, Winter 2019

Training and Inference
▪ Training:
- Determine the values of the weights

▪ Inference:
- Use the values of the weights, inputs, determine the outputs

64

Stanford CS149, Winter 2019

Example: using DNN to recognize a car

Stanford CS149, Winter 2019

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer architecture research
conferences on the topic of ASICs or accelerators for deep
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)

Stanford CS149, Winter 2019

TPU Card
●
●

Up to 4 cards per server

Stanford CS149, Winter 2019

TPU High-level Chip Architecture

▪ The Matrix Unit: 65,536 (256x256) 8-bit
multiply-accumulate units
- Systolic array

▪ 700 MHz clock rate
▪ Peak: 92T operations/second

- 65,536 * 2 * 700M
▪ 4 MB of on-chip Accumulator memory
▪ 24 MB of on-chip Unified Buffer (activation

memory)
▪ Two 2133MHz DDR3 DRAM channels
▪ 8 GB of off-chip weight DRAM memory
▪ vs GPU and CPU
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU

68

● 4 MiB of on-chip Accumulator
memory

● The Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units

● 700 MHz clock rate
● Peak: 92T operations/second

○ 65,536 * 2 * 700M
● >25X as many MACs vs GPU
● >100X as many MACs vs CPU

● 24 MiB of on-chip Unified Buffer
(activation memory)

● 3.5X as much on-chip memory
vs GPU

● Two 2133MHz DDR3 DRAM
channels

● 8 GiB of off-chip weight DRAM
memory

Stanford CS149, Winter 2019

TPU Programmers View

▪ Five key CISC instructions (CPI > 10)
Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate(ReLU,Sigmoid,Maxpool,LRN,...)

▪ Complexity in software
- No branches
- In-order issue
- Software controlled buffers
- Software controlled pipeline synchronization

69

Stanford CS149, Winter 2019

Three Types of NNs

●

●

●

Stanford CS149, Winter 2019

2016 NN Datacenter Workload

Name LOC
Layers

Nonlinear
function Weights

TPU Ops /
Weight

Byte

TPU
Batch
Size

%
Deployed

FC Conv Vector Pool Total
MLP0 0.1k 5 5 ReLU 20M 200 200 61%
MLP1 1k 4 4 ReLU 5M 168 168

LSTM0 1k 24 34 58 sigmoid,
tanh 52M 64 64

29%
LSTM1 1.5k 37 19 56 sigmoid,

tanh 34M 96 96

CNN0 1k 16 16 ReLU 8M 2888 8 5%
CNN1 1k 4 72 13 89 ReLU 100M 1750 32

Stanford CS149, Winter 2019

Three Contemporary Chips

Processor mm2 Clock
MHz

TDP
Watts

Idle
Watts

Memory
GB/sec

Peak TOPS/chip

8b int. 32b FP

CPU: Haswell
(18 core)

662 2300 145 41 51 2.6 1.3

GPU: Nvidia
K80 (2 / card) 561 560 150 25 160 -- 2.8

TPU <331* 700 75 28 34 91.8 --

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process
These chips and platforms chosen for comparison because widely deployed in Google data centers

*TPU is less than half die size of the Intel Haswell processor

72

Stanford CS149, Winter 2019

Roofline

§ One could hope to always attain peak performance
(Flop/s)

§ However, finite locality (reuse) and bandwidth limit
performance

§ Consider idealized processor/caches
§ Plot the performance bound using Arithmetic

Intensity (AI) as the x-axis…
• AI = Flops / Bytes presented to DRAM

• Attainable Flop/s = min(peak Flop/s, AI * peak GB/s)

• Log-log scale makes it easy to doodle, extrapolate performance along
Moore’s Law, etc…

• Kernels with AI less than machine balance are ultimately DRAM

Peak Flop/s

A
tt

ai
na

bl
e

Fl
op

/s

DRAM G
B/

s

Arithmetic Intensity (Flop:Byte)

Memory-bound Compute-bound

Stanford CS149, Winter 2019

TPU Roofline

Stanford CS149, Winter 2019

CPU (Haswell) Roofline

Stanford CS149, Winter 2019

GPU (K80) Roofline
76

Stanford CS149, Winter 2019

Why Below Rooflines (MLP0)

Type Batch 99th% Response Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPU 200 7.0 ms 225,000 80%
TPU 250 10.0 ms 280,000 100%

Stanford CS149, Winter 2019

Performance of TPU & GPU Relative to CPU

Type
MLP LSTM CNN Weighted

Mean0 1 0 1 0 1

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3

Stanford CS149, Winter 2019

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

~100-1000X
more efficient

ASIC
Video encode/decode,

Audio playback,
Camera RAW processing,

neural nets (future?)

Programmable DSP
FPGA/

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Stanford CS149, Winter 2019

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts may not be desirable even if
they run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode, image processing/computer

vision?
- Specialized instructions: expanding set of AVX vector instructions, new instructions for accelerating AES encryption (AES-NI)
- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before transferring to memory

(likely to see fixed-function HW to reduce overhead of general data compression/decompression)

Stanford CS149, Winter 2019

Summary: heterogeneous processing for efficiency

▪ Heterogeneous parallel processing: use a mixture of computing resources that fit
mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized fixed-function

processors
- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, general-
purpose components
- This is not the case in emerging systems (optimized for perf/watt)
- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the programmer
- Current CS research challenge: how to write efficient, portable programs for emerging heterogeneous

architectures?

