
Parallel Computing
Stanford CS149, Winter 2019

Lecture 18:

Transactional Memory



Stanford CS149, Winter 2019

Raising level of abstraction for synchronization

▪ Previous topic: machine-level atomic operations

- Fetch-and-op, test-and-set, compare-and-swap, load linked-store conditional

▪ Then we used these atomic operations to construct higher level 
synchronization primitives in software:
- Locks, barriers
- Lock-free data structures

- We’ve seen how it can be challenging to produce correct programs using these 
primitives (easy to create bugs that violate atomicity, create deadlock, etc.)

▪ Today: raising level of abstraction for synchronization even further
- Idea: transactional memory
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What you should know
▪ What a transaction is

▪ The difference (in semantics) between an atomic code block and 
lock/unlockprimitives

▪ The basic design space of transactional memory implementations
- Data versioning policy
- Conflict detection policy
- Granularity of detection

▪ The basics of a software implementation of transactional memory
▪ The basics of a hardware implementation of transactional memory 

(consider how it relates to the cache coherence protocol 
implementations we’ve discussed previously in the course)
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Review: ensuring atomicity via locks

▪ Deposit is a read-modify-write operation:  want “deposit” to be 
atomic with respect to other bank operations on this account

▪ Locks are one mechanism to synchronize threads to ensure atomicity of 
update (via ensuring mutual exclusion on the account)

void deposit(Acct account, int amount)
{

int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}

lock(account.lock);

unlock(account.lock);
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Programming with transactions
void deposit(Acct account, int amount)
{

lock(account.lock);
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);
unlock(account.lock);

}

void deposit(Acct account, int amount) 
{

atomic {
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}
}

▪ Atomic construct is declarative
- Programmer states what to do (maintain atomicity of this code), not how to do it
- No explicit use or management of locks

▪ System implements synchronization as necessary to ensure atomicity
- System could implement atomic { } using locks (see this later)
- Implementation discussed today uses optimistic concurrency: maintain serialization only in 

situations of true contention (R-W or W-W conflicts)
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▪ Declarative: programmer defines what should be done
- Execute all these independent 1000 tasks

▪ Imperative: programmer states how it should be done
- Spawn N worker threads.  Assign work to threads by 

removing work from a shared task queue

- Perform this set of operations atomically

- Acquire a lock, perform operations, release the lock

Declarative vs. imperative abstractions 
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Transactional Memory (TM)
▪ Memory transaction

- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

▪ Atomicity (all or nothing) 
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

▪ Isolation
- No other processor can observe writes before transaction commits

▪ Serializability 
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction
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Transactional Memory (TM)
In other words… many of the properties we maintained for a 
single address in a coherent memory system, we’d like to 
maintain for sets of reads and writes in a transaction.

Transaction:
Reads: X, Y, Z
Writes: A, X These memory transactions will either all be 

observed by other processors, or none of them will.
(the effectively all happen at the same time) 

What is the consistency model for TM?
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Motivating transactional memory
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Map: Key → Value
- Implemented as a hash table with linked list per bucket

Another example: Java HashMap 

Bad: not thread safe (when synchronization needed)
Good: no lock overhead when synchronization not needed

public Object get(Object key)  {

int idx = hash(key); // compute hash

HashEntry e = buckets[idx]; // find bucket

while (e != null)  { // find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}



Stanford CS149, Winter 2019

▪ Java 1.4 solution: synchronized layer
- Convert any map to thread-safe variant
- Uses explicit, coarse-grained mutual locking specified by programmer

Synchronized HashMap

public Object get(Object key) {
synchronized (myHashMap) { // per-hashmap lock guards all

// accesses to hashMap

return myHashMap.get(key);

}

}

▪ Coarse-grain synchronized HashMap
- Good: thread-safe, easy to program
- Bad: limits concurrency, poor scalability 
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Review from earlier fine-grained sync lecture

▪ One solution: use finer-grained synchronization (e.g., lock per bucket)
- Now thread safe: but incurs lock overhead even if synchronization not needed

public Object get(Object key)  {

int idx = hash(key); // compute hash

HashEntry e = buckets[idx]; // find bucket

while (e != null)  { // find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

What are solutions for making Java’s HashMap thread-safe?
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Review: performance of fine-grained locking
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▪ Simply enclose all operation in atomic block
- Semantics of atomic block: system ensures atomicity of logic within block

Transactional HashMap

public Object get(Object key) {

atomic { // system guarantees atomicity

return m.get(key);

}

}

▪ Good: thread-safe, easy to program
▪ What about performance and scalability? 

- Depends on the workload and implementation of atomic (to be discussed)
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Another example: tree update by two threads

1

2

3 4

Goal: modify nodes 3 and 4 in a thread-safe way

Slide credit: Austen McDonald
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Fine-grained locking example
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3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way
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Fine-grained locking example
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Goal: modify nodes 3 and 4 in a thread-safe way
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Fine-grained locking example
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Goal: modify nodes 3 and 4 in a thread-safe way
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Fine-grained locking example
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Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way
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Fine-grained locking example
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Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way
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Fine-grained locking example

1
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3 4

Slide credit: Austen McDonald

Locking can prevent concurrency
(here: locks on node 1 and 2 during update to node 3 could delay update to 4)

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way
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Transactions example

1
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3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3

Figure highlights data touched 
as part of transaction
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Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Figure highlights data touched 
as part of transaction
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Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 4
WRITE: 4

NO READ-WRITE or
WRITE-WRITE conflicts!
(no transaction writes to data that is 
accessed by other transactions)

Figure highlights data touched 
as part of transaction
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Transactions example #2

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 3
WRITE: 3

Conflicts exist: transactions 
must be serialized 
(both transactions write to node 3)

(Both transactions modify node 3)
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Performance: locks vs. transactions
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“TCC” is a TM system 
implemented in hardware
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Another motivation: failure atomicity

▪ Complexity of manually catching exceptions
- Programmer provides “undo” code on a case-by-case basis
- Complexity: must track what to undo and how… 
- Some side-effects may become visible to other threads
- E.g., an uncaught case can deadlock the system… 

void transfer(A, B, amount) {
synchronized(bank)
{

try {
withdraw(A, amount);
deposit(B, amount);

}
catch(exception1) { /* undo code 1*/ }
catch(exception2) { /* undo code 2*/ }

…
}

}
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Failure atomicity: transactions

▪ System now responsible for processing exceptions
- All exceptions (except those explicitly managed by the programmer)
- Transaction is aborted and memory updates are undone
- Recall: a transaction either commits or it doesn’t: no partial updates are visible 

to other threads
- E.g., no locks held by a failing threads… 

void transfer(A, B, amount)
{

atomic {
withdraw(A, amount);
deposit(B, amount);  

}
}
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Another motivation: composability

▪ Composing lock-based code can be tricky
- Requires system-wide policies to get correct
- System-wide policies can break software modularity

▪ Programmer caught between a lock and a hard (to implement) place !
- Coarse-grain locks: low performance
- Fine-grain locking: good for performance, but mistakes can lead to deadlock

void transfer(A, B, amount)
{

synchronized(A) {
synchronized(B) {
withdraw(A, amount);
deposit(B, amount);

}
}

}

Thread 0:
transfer(x, y, 100);

Thread 1:
transfer(y, x, 100);

DEADLOCK!
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Composability: locks
void transfer(A, B, amount) {

synchronized(A) {
synchronized(B) {
withdraw(A, amount);
deposit(B, amount);

}
}

}

void transfer2(A, B, amount) {
synchronized(B) {

synchronized(A) {
withdraw(A, 2*amount);
deposit(B, 2*amount);

}
}

}

DEADLOCK!

▪ Composing lock-based code can be tricky
- Requires system-wide policies to get correct
- System-wide policies can break software modularity

▪ Programmer caught between an lock and a hard (to implement) place
- Coarse-grain locks: low performance
- Fine-grain locking: good for performance, but mistakes can lead to deadlock
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Composability: transactions

▪ Transactions compose gracefully (in theory)
- Programmer declares global intent (atomic execution of transfer)
- No need to know about global implementation strategy

- Transaction intransfer subsumes any defined in withdraw and deposit
- Outermost transaction defines atomicity boundary

▪ System manages concurrency as well as possible
- Serialization for transfer(A, B, 100) and transfer(B, A, 200)
- Concurrency for transfer(A, B, 100) and transfer(C, D, 200)

void transfer(A, B, amount) {
atomic {

withdraw(A, amount);
deposit(B, amount);

}
}

25

Thread 0:
transfer(x, y, 100)

Thread 1:
transfer(y, x, 100);
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Advantages (promise) of transactional memory 
▪ Easy to use synchronization construct

- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

▪ Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert 
programming with fined-grained locks, with 10% of the development time  

▪ Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

▪ Composability
- Safe and scalable composition of software modules
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Example integration with OpenMP
▪ Example: OpenTM = OpenMP + TM 

▪ OpenTM features
- Transactions, transactional loops and transactional sections
- Data directives for TM (e.g., thread private data)
- Runtime system hints for TM

▪ Code example:
#pragma omp transfor schedule (static, chunk=50)

for (int i=0; i<N; i++) {

bin[A[i]]++; 

}
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Self-check: atomic { } ≠ lock() + unlock()
▪ The difference

- Atomic: high-level declaration of atomicity
- Does not specify implementation of atomicity

- Lock: low-level blocking primitive
- Does not provide atomicity or isolation on its own

▪ Keep in mind
- Locks can be used to implement an atomic block but…
- Locks can be used for purposes beyond atomicity
- Cannot replace all uses of locks with atomic regions

- Atomic eliminates many data races, but programming with atomic blocks 
can still suffer from atomicity violations: e.g., programmer erroneous splits 
sequence that should be atomic into two atomic blocks

Make sure you 
understand this 

difference in semantics!
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What about replacing synchronized with atomic in this example?

// Thread 1
synchronized(lock1)
{

…
flagA = true;
while (flagB == 0); 
…

}

// Thread 2
synchronized(lock2)
{

…
flagB = true;
while (flagA == 0); 
…

}
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Atomicity violation due to programmer error

▪ Programmer mistake: logically atomic code sequence (in thread 1) is 
erroneously separated into two atomic blocks (allowing another thread to 
set pointer to NULL in between)

// Thread 1
atomic
{

… 
ptr = A;
…

}

atomic
{

B = ptr->field;
}

// Thread 2
atomic
{

…
ptr = NULL; 

}
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Implementing transactional memory
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Recall transactional semantics
▪ Atomicity (all or nothing) 

- At commit, all memory writes take effect at once
- In event of abort, none of the writes appear to take effect

▪ Isolation
- No other code can observe writes before commit

▪ Serializability 
- Transactions seem to commit in a single serial order
- The exact order is not guaranteed though
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TM implementation basics
▪ TM systems must provide atomicity and isolation

- While maintaining concurrency as much as possible

▪ Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously 

committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent 
transactions conflict? 
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Data versioning policy
Manage uncommitted (new) and previously committed (old) 
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)
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Eager versioning
Update memory immediately, maintain “undo log” in case of abort

Begin Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log

Write   x ← 15

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Commit Transaction

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log
X: 10
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Lazy versioning
Log memory updates in transaction write buffer, flush buffer on commit

Begin Transaction Write   x ← 15

Commit Transaction Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Write 
buffer

Memory

Thread
(executing transaction)

X: 10

Write buffer
X: 15

Memory

Thread
(executing transaction)

X: 15

Write 
bufferX: 15

Memory

Thread
(executing transaction)

X: 10

Write 
bufferX: 15
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Data versioning
▪ Goal: manage uncommitted (new) and committed (old) versions 

of data for concurrent transactions
▪ Eager versioning (undo-log based)

- Update memory location directly on write
- Maintain undo information in a log (incurs per-store overhead)
- Good: faster commit (data is already in memory) 

- Bad: slower aborts, fault tolerance issues (consider crash in middle of transaction)

▪ Lazy versioning (write-buffer based)
- Buffer data in a write buffer until commit
- Update actual memory location on commit 
- Good: faster abort (just clear log), no fault tolerance issues
- Bad: slower commits

Eager versioning philosophy: write to memory 
immediately, hoping transaction won’t abort
(but deal with aborts when you have to)

Lazy versioning philosophy: only write to 
memory when you have to
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Conflict detection
▪ Must detect and handle conflicts between transactions

- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed) 
transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

▪ System must track a transaction’s read set and write set 
- Read-set: addresses read during the transaction
- Write-set: addresses written during the transaction
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Pessimistic detection
▪ Check for conflicts (immediately) during loads or stores

- Philosophy: “I suspect conflicts might happen, so let’s always check to see if 
one has occurred after each memory operation… if I’m going to have to 
roll back, might as well do it now to avoid wasted work.”

▪ “Contention manager” decides to stall or abort transaction 
when a conflict is detected
- Various policies to handle common case fast 
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Pessimistic detection examples

T0 T1

rd A

wr B

check

check

wr C
check

commit
commit

T0 T1

wr A

rd A

check

check

commit

commit

stall

T0 T1

rd A

wr A

check

check

commit

commit

restart
rd A

check

T0 T1

check

wr A

wr A

check

restart

check
wr A

restart

wr A
check

restart

Case 1 Case 2 Case 3 Case 4

Success Early detect
(and stall)

Abort No progress
(question: how to avoid livelock?)

Tim
e

stall
(case 2)

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort) 
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Optimistic detection
▪ Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the 
transaction tries to commit” 

▪ On a conflict, give priority to committing transaction

- Other transactions may abort later on
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Optimistic detection
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commit
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Conflict detection trade-offs
▪ Pessimistic conflict detection (a.k.a. “eager”)

- Good: detect conflicts early (undo less work, turn some aborts to stalls)
- Bad: no forward progress guarantees, more aborts in some cases 
- Bad: fine-grained communication (check on each load/store)

- Bad: detection on critical path

▪ Optimistic conflict detection (a.k.a.“lazy” or “commit”)
- Good: forward progress guarantees
- Good: bulk communication and conflict detection
- Bad: detects conflicts late, can still have fairness problems
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TM implementation space (examples)
▪ Hardware TM systems

- Lazy + optimistic: Stanford TCC
- Lazy + pessimistic: MIT LTM, Intel VTM
- Eager + pessimistic: Wisconsin LogTM
- Eager + optimistic: not practical

▪ Software TM systems
- Lazy + optimistic (rd/wr): Sun TL2
- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

▪ Optimal design remains an open question
- May be different for HW, SW, and hybrid
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Software Transactional Memory
atomic {

a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

tmTxnBegin()
tmWr(&a.x, t1)
tmWr(&a.y, t2)
if (tmRd(&a.z) != 0) {

tmWr(&a.x, 0);
tmWr(&a.z, t3)

}
tmTxnCommit()

nSoftware barriers (STM function call) for TM bookkeeping
nVersioning, read/write-set tracking, commit, …
nUsing locks, timestamps, data copying, … 

nRequires function cloning or dynamic translation
nFunction used inside and outside of transaction
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STM Runtime Data Structures
▪ Transaction descriptor (per-thread)

- Used for conflict detection, commit, abort, …
- Includes the read set, write set, undo log or write buffer 

▪ Transaction record (per data)
- Pointer-sized record guarding shared data
- Tracks transactional state of data

- Shared: accessed by multiple readers 
- Using version number or shared reader lock

- Exclusive:  access by one writer
- Using writer lock that points to owner

- BTW: same way that HW cache coherence works



Stanford CS149, Winter 2019

Mapping Data to Transaction Records

class Foo {
int x;
int y;
}

TxR
x
y

vtbl

Embed in each object

Java/C#

C/C++
Address-based hash

into global table

Cache-line or word 
granularity

struct Foo {
int x;
int y;
}

x
y

TxR1
TxR2
. . .
TxRn

Every data item has an associated transaction record

hash
x
y

vtbl TxR1
TxR2
. . .
TxRn

Hash fields or 
array elements to global table

f(obj.hash, field.index)

OR

What’s the tradeoff?
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Conflict Detection Granularity
▪ Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1 and Txn 2)

▪ Element/field granularity (word) 
- Reduces false conflicts 

- Improves concurrency (e.g. Txn 1 and Txn 2)

- Increased overhead (time/space)

▪ Cache line granularity (multiple words)
- Matches hardware TM

- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

▪ Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Txn 1
a.x = …
a.y = …

Txn 2
… = … a.z …
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An Example STM Algorithm
▪ Based on Intel�s McRT STM [PPoPP�06, PLDI�06, CGO�07]

- Eager versioning, optimistic reads, pessimistic writes

▪ Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits
- Local timestamp per xaction

- Global timestamp value when xaction last validated

▪ Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked
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STM Operations
▪ STM read (optimistic)

- Direct read of memory location (eager)
- Validate read data 

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

▪ STM write (pessimistic)
- Validate data 

- Check if unlocked and data version ≤ local timestamp
- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)
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STM Operations (cont)

▪ Read-set validation 

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

▪ STM commit 

- Atomically increment global timestamp by 2  (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp
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STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t; 

}

X1
atomic {
t1 = bar.x;
t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

▪ X1 copies object foo into object bar
▪ X2 should read bar as [0,0] or [9,7]
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STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t; 

}

X1
atomic {
t1 = bar.x;
t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp



Stanford CS149, Winter 2019

Challenges for STM Systems
▪ Overhead of software barriers

▪ Function cloning

▪ Robust contention management

▪ Memory model (strong Vs. weak atomicity)
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Optimizing Software Transactions

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

tmTxnBegin()
tmWr(&a.x, t1)
tmWr(&a.y, t2)
if (tmRd(&a.z) != 0) {

tmWr(&a.x, 0);
tmWr(&a.z, t3)

}
tmTxnCommit()

nMonolithic barriers hide redundant logging & locking from the compiler
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Optimizing Software Transactions

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnOpenForWrite(a)
txnLogObjectInt(&a.y, a)
a.y = t2
txnOpenForRead(a)
if(a.z != 0) {
txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = 0
txnOpenForWrite(a)
txnLogObjectInt(&a.z, a)
a.z = t3
}

n Decomposed barriers expose redundancies
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Optimizing Software Transactions

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnLogObjectInt(&a.y, a)
a.y = t2
if (a.z != 0) {

a.x = 0
txnLogObjectInt(&a.z, a)
a.z = t3

}

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

n Allows compiler to optimize STM code
n Produces fewer & cheaper STM operations
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Compiler Optimizations for STM 
▪ Standard compiler optimizations

- CSE, PRE, dead-code elimination, …
- Assuming IR supports TM, few compiler mods needed

▪ STM-specific optimizations
- Partial inlining of barrier fast paths 

- Often written in optimized assembly 
- No barriers for immutable and transaction local data

▪ Impediments to optimizations
- Support for nested transactions
- Dynamically linked STM library
- Dynamic tuning of STM algorithm 
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Effect of Compiler Optimizations

▪ 1 thread overheads over thread-unsafe baseline

▪ With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization 
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Function Cloning
n Problem: need two version of functions

n One with and one without STM instrumentation

n Managed languages (Java, C#) 
n On demand cloning of methods using JIT

n Unmanaged languages (C, C++)
n Allow programmer to mark TM and pure functions
n TM functions should be cloned by compiler
n Pure functions touch only transaction-local data
§ No need for clones

n All other functions handled as irrevocable actions
n Some overhead for checks and mode transitions
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Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming
n Long term issue: energy wasteful

n Lack of strong atomicity
n Costly to provide purely in software 
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Why is STM Slow? 
▪ Measured single-thread STM performance

▪ 1.8x – 5.6x slowdown over sequential
▪ Most time goes in read barriers & validation

- Most apps read more data than they write
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Types of Hardware Support
▪ Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)

- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

▪ Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW
- No SW  barriers

▪ Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, … 

Write versioning HW SW SW

Conflict detection HW SW HW
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HTM Performance Example

n 2x to 7x over STM performance
n Within 10% of sequential for one thread
n Scales efficiently with number of processors

n Uncommon cases not a performance challenge
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STM Efficiency
▪ Old question: what is the overhead of STM?
- 1.3x – 6x

▪ New question: what is the performance of a well engineered system using STM vs. a 
well engineered system using fine-grained locks?
- Use STM aware data structures
- They don’t rely on STM, but play  nicely with STM

- Use STM to compose these data structures
- Nathan Bronson



Stanford CS149, Winter 2019

Lock manager inside Apache�s Derby SQL Database

▪ Row-level locks
- Multiple lock modes
- Tricky conflict and queue logic
- Automatic deadlock cycle detection
- Per-row, per-txn, and per-group operations

▪ Using ConcurrentHashMaps + fine-grained locks
- 2204 non-comment lines of Java
- 128 lines of discussion to prove that new code is thread safe!

- Informal proof that the deadlock detector is not itself subject to deadlock!

▪ Using STM + HashTrieTxnMaps
- 418 non-comment lines of Scala
- A number of corner cases avoided (races, timeouts, etc.)
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Performance Comparison (Read Heavy)
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TM Implementation Summary 1

▪ TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, … 

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)

Profs. Olukotun/Zaharia CS 149  Lecture 6 74
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Hardware transactional memory (HTM)

▪ Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

▪ Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

▪ Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort) 
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▪ Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

▪ Coherence requests check R/W bits to detect conflicts 
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict 

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and 
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction
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Example HTM implementation: lazy-optimistic

▪ CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers
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CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

▪ Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D
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CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

▪ Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

▪ Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

▪ Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

▪ Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from 
another core’s commit

(remote core’s write of A 
conflicts with local read of A: 
triggers abort of pending 
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D
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Hardware transactional memory support in 
Intel Haswell architecture
▪ New instructions for “restricted transactional memory” (RTM)

- xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock

- xend
- xabort

- Implementation: tracks read and write set in L1 cache

▪ Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of 

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that 
transactions will not abort 
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Summary: transactional memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol 


