
Parallel Computing
Stanford CS149, Winter 2019

Lecture 13:

Fine-grained Synchronization &
Lock-free Programming

Stanford CS149, Winter 2019

Deadlock
Livelock

Starvation

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Some terminology

Stanford CS149, Winter 2019

Deadlock
Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Can arise when each operation has
acquired a shared resource that another
operation needs.

In a deadlock situations, there is no way
for any thread (or, in this illustration, a
car) to make progress unless some thread
relinquishes a resource (“backs up”)

Stanford CS149, Winter 2019

Traffic deadlock

Non-technical side note for car-owning students:
Deadlock happens all the %$*** time in SF.

(However, deadlock can be amusing when a bus
driver decides to let another driver know they have
caused deadlock... “go take cs149 you fool!”)

Stanford CS149, Winter 2019

More illustrations of deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

Stanford CS149, Winter 2019

Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are finite and workers wait if
no output space is available

const int numEl = 1024;
float msgBuf1[numEl];
float msgBuf2[numEl];

int threadId getThreadId();

... do work ...

MsgSend(msgBuf1, numEl * sizeof(int), threadId+1, ...
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Every process sends a message (blocking send) to
the processor with the next higher id

Then receives message from processor with next
lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

Stanford CS149, Winter 2019

Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for other
resources needed to complete an operation

3. No preemption: processors don’t give up resources until operation they
wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle exists
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

Stanford CS149, Winter 2019

Livelock

Stanford CS149, Winter 2019

Livelock

Stanford CS149, Winter 2019

Livelock

Stanford CS149, Winter 2019

Livelock
Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Can you think of a good daily life
example of livelock?

Computer system examples:

Operations continually abort and retry

Stanford CS149, Winter 2019

Starvation
State where a system is making overall
progress, but some processes make no
progress.
(green cars make progress, but yellow cars are stopped)

Starvation is usually not a permanent
state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow cars) must
yield to traffic moving up/down (green cars)

Stanford CS149, Winter 2019

Ok, let’s get started…

Stanford CS149, Winter 2019

Warm up (and review)
// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {
 int old = *addr;
 *addr = (old == compare) ? val : old;
 return old;
}

Let’s build a lock using compare and swap:

typedef int lock;

void lock(Lock* l) {
 while (atomicCAS(l, 0, 1) == 1);
}

void unlock(Lock* l) {
 *l = 0;
}

The following is potentially more
efficient under contention: Why?
void lock(Lock* l) {
 while (1) {
 while(*l == 1);
 if (atomicCAS(l, 0, 1) == 0)
 return;
 }
}

Stanford CS149, Winter 2019

Example: a sorted linked list
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 n->next = cur;
 prev->next = n;
}

void delete(List* list, int value) {

 // assume case of deleting first node in list
 // is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

What can go wrong if multiple threads
operate on the linked list simultaneously?

Stanford CS149, Winter 2019

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

Stanford CS149, Winter 2019

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

Stanford CS149, Winter 2019

Example: simultaneous insertion/deletion
Thread 1 attempts to insert 6
Thread 2 attempts to delete 10

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

Possible result: (thread 2 finishes delete first)

3 5 10

6

Stanford CS149, Winter 2019

Solution 1: protect the list with a single lock

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 lock(list->lock);

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }
 n->next = cur;
 prev->next = n;
 unlock(list->lock);
}

void delete(List* list, int value) {

 lock(list->lock);

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 unlock(list->lock);
 return;
 }

 prev = cur;
 cur = cur->next;
 }
 unlock(list->lock);
}

struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
 Lock lock;
};

Per-list lock

Stanford CS149, Winter 2019

Single global lock per data structure

▪ Good:
- It is relatively simple to implement correct mutual

exclusion for data structure operations (we just did it!)

▪ Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

Stanford CS149, Winter 2019

Challenge: who can do better?
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

3 5 10 11 18

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 prev->next = n;
 n->next = cur;
}

void delete(List* list, int value) {

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

Stanford CS149, Winter 2019

Hand-over-hand traversal

Credit: (Hal Boedeker, Orlanda Sentinel) American Ninja Warrior

Stanford CS149, Winter 2019

T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

Stanford CS149, Winter 2019

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking

Stanford CS149, Winter 2019

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

Stanford CS149, Winter 2019

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

Stanford CS149, Winter 2019

Solution 2: fine-grained locking
struct Node {
 int value;
 Node* next;
 Lock* lock;
};

struct List {
 Node* head;
 Lock* lock;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert before head handled
 // here (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;
 cur = list->head->next;

 lock(prev->lock);
 unlock(list->lock);
 if (cur) lock(cur->lock);

 while (cur) {
 if (cur->value > value)
 break;

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }

 n->next = cur;
 prev->next = n;

 unlock(prev->lock);
 if (cur) unlock(cur->lock);
}

void delete(List* list, int value) {

 // assume case of delete head handled here
 // (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;
 cur = list->head->next;

 lock(prev->lock);
 unlock(list->lock);
 if (cur) lock(cur->lock)

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 unlock(prev->lock);
 unlock(cur->lock);
 delete cur;
 return;
 }

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }
 unlock(prev->lock);
}

Challenge to students: there is way to further
improve the implementation of insert(). What is it?

Stanford CS149, Winter 2019

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock
- In previous linked-list example: a single monolithic lock is overly conservative

(operations on different parts of the linked list can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required
- Deadlock? (Self-check: in the linked-list example from the prior slides, why do you

immediately that the code is deadlock free?)
- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now

involves memory writes)
- Extra storage cost (a lock per node)
- What is a middle-ground solution that trades off some parallelism for reduced

overhead? (hint: similar issue to selection of task granularity)

Stanford CS149, Winter 2019

Practice exercise (on your own time)
▪ Implement a fine-grained locking implementation of a

binary search tree supporting insert and delete

struct Tree {
 Node* root;
};

struct Node {
 int value;
 Node* left;
 Node* right;
};

void insert(Tree* tree, int value);
void delete(Tree* tree, int value);

Stanford CS149, Winter 2019

Lock-free data structures

Stanford CS149, Winter 2019

Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other

threads from completing operations on a shared data structure
indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.
- Now, no other threads can complete operations on the data structure (although thread 0 is

not actively making progress modifying it)

▪ An algorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

Stanford CS149, Winter 2019

Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is

guaranteed to make progress (“systemwide progress”)
- In lock-free case, it is not possible to preempt one of the threads at an

inopportune time and prevent progress by rest of system

- Note: this definition does not prevent starvation of any one thread

Stanford CS149, Winter 2019

Single reader, single writer bounded queue *
struct Queue {
 int data[N];
 int head; // head of queue
 int tail; // next free element
};

void init(Queue* q) {
 q->head = q->tail = 0;
}

// return false if queue is full
bool push(Queue* q, int value) {

 // queue is full if tail is element before head
 if (q->tail == MOD_N(q->head - 1))
 return false;

 q->data[q->tail] = value;
 q->tail = MOD_N(q->tail + 1);
 return true;
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 // if not empty
 if (q->head != q->tail) {
 *value = q->data[q->head];
 q->head = MOD_N(q->head + 1);

 return true;
 }
 return false;
}

▪ Only two threads (one producer, one consumer) accessing queue at the same time
▪ Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Winter 2019

Single reader, single writer unbounded queue *
struct Node {
 Node* next;
 int value;
};

struct Queue {
 Node* head;
 Node* tail;
 Node* reclaim;
};

void init(Queue* q) {
 q->head = q->tail = q->reclaim = new Node;
}

void push(Queue* q, int value) {

 Node* n = new Node;
 n->next = NULL;
 n->value = value;

 q->tail->next = n;
 q->tail = q->tail->next;

 while (q->reclaim != q->head) {
 Node* tmp = q->reclaim;
 q->reclaim = q->reclaim->next;
 delete tmp;

 }
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 if (q->head != q->tail) {
 *value = q->head->next->value;
 q->head = q->head->next;

 return true;
 }
 return false;
}

▪ Tail points to last element added (if non-empty)
▪ Head points to element BEFORE head of queue
▪ Node allocation and deletion performed by the same thread (producer thread)

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Winter 2019

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)
tailreclaim

3 10
head

pop (returns 10)
tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim

3 10

reclaim, head

10

push 5 (triggers reclaim)

5
tail

Stanford CS149, Winter 2019

Lock-free stack (first try)
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 Node* old_top = s->top;
 if (old_top == NULL)
 return NULL;
 Node* new_top = old_top->next;
 if (compare_and_swap(&s->top, old_top, new_top) == old_top)
 return old_top;
 }
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.

Note difference from fine-grained locking: In fine-grained locking, the implementation locked a part
of a data structure. Here, threads do not hold lock on data structure at all.
* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Winter 2019

The ABA problem
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)
complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

Careful: On this slide A, B, C, and D are addresses
of nodes, not value stored by the nodes!

Stanford CS149, Winter 2019

Lock-free stack using counter for ABA soln
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 int pop_count = s->pop_count;
 Node* top = s->top;
 if (top == NULL)
 return NULL;
 Node* new_top = top->next;
 if (double_compare_and_swap(&s->top, top, new_top,
 &s->pop_count, pop_count, pop_count+1))
 return top;
 }
}

▪ Maintain counter of pop operations
▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS
▪ Could also solve ABA problem with careful node allocation and/or element reuse policies

test to see if either have changed (assume
function returns true if no changes)

Stanford CS149, Winter 2019

Compare and swap on x86
▪ x86 supports a “double-wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used on the previous slide

- But could simply ensure the stack’s count and top fields are contiguous in
memory to use the 64-bit wide single compare-and-swap instruction below.

▪ cmpxchg8b
- “compare and exchange eight bytes”

- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
- “compare and exchange 16 bytes”

- Can be used for compare-and-swap of two 64-bit values

Stanford CS149, Winter 2019

Another problem: referencing freed memory
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = s->top;

 if (old.top == NULL)
 return NULL;

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack))
 int value = old.top->value;
 delete old.top;
 return value;
 }
 }
}

old top might have been freed at this point
(by some other thread that popped it)

Stanford CS149, Winter 2019

Hazard pointer: avoid freeing a node until it’s known
that all other threads do not hold reference to it

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = hazard = s->top;

 if (old.top == NULL) {
 return NULL;
 }

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack)) {
 int value = old.top->value;
 retire(old.top);
 return value;
 }
 hazard = NULL;
 }
}

// delete nodes if possible
void retire(Node* ptr) {
 push(retireList, ptr);
 retireListSize++;

 if (retireListSize > THRESHOLD)
 for (each node n in retireList) {
 if (n not pointed to by any
 thread’s hazard pointer) {
 remove n from list
 delete n;
 }
 }
}

struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

// per thread ptr (node that cannot
// be deleted since the thread is
// accessing it)
Node* hazard;

// list of nodes this thread must
// delete (this is a per thread list)
Node* retireList;
int retireListSize;

Stanford CS149, Winter 2019

Lock-free linked list insertion *
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

// insert new node after specified node
void insert_after(List* list, Node* after, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert into empty list handled
 // here (keep code on slide simple for class discussion)

 Node* prev = list->head;

 while (prev->next) {
 if (prev == after) {
 while (1) {
 Node* old_next = prev->next;
 n->next = old_next;
 if (compare_and_swap(&prev->next, old_next, n) == old_next)
 return;
 }
 }

 prev = prev->next;
 }
}

Compared to fine-grained
locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert. Delete is more complex.

Stanford CS149, Winter 2019

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure

Consider case where B is deleted simultaneously with insertion of E after B.

B now points to E, but B is not in the list!

For the curious:

- Harris 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists”
- Fomitchev 2004. “Lock-free linked lists and skip lists”

A B C D

E

X
CAS succeeds
on A->next

CAS succeeds
on B->next

Stanford CS149, Winter 2019

Lock-free vs. locks performance comparison

Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free”
fg = “fine grained lock”

Stanford CS149, Winter 2019

In practice: why lock free data-structures?
▪ When optimizing parallel programs in this class you often assume

that only your program is using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc.

▪ In these cases, well-written code with locks can sometimes be as fast
(or faster) than lock-free code

▪ But there are situations where code with locks can suffer from tricky
performance problems
- Situations where a program features many threads (e.g., database, webserver) and page

faults, pre-emption, etc. can occur while a thread is in a critical section
- Locks createsproblems like priority inversion, convoying, crashing in critical section, etc.

that are often discussed in OS classes

Stanford CS149, Winter 2019

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid overheads
due to locks
- But can be tricky to implement (and ensuring correctness in a lock-free setting has its own

overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

Stanford CS149, Winter 2019

More reading
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms

- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

▪ Michael Sullivan’s Relaxed Memory Calculus (RMC) compiler

- https://github.com/msullivan/rmc-compiler

▪ Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

