Lecture 11:

Data Parallel Thinking

Parallel Computing
Stanford CS149, Winter 2019
Today’s theme

- Many of you are likely accustomed to thinking about parallel programming in terms of “what workers do”

- Today I would like you to think about describing programs in terms of operations on sequences of data
 - map
 - filter
 - fold / reduce
 - scan / segmented scan
 - sort
 - groupBy
 - join

- Main idea: high-performance implementations of these operations exist. So programs written in terms of these primitives can often run efficiently on a parallel machine
Motivation

- Why must an application expose large amounts of parallelism?

- Utilize large numbers of cores
 - High core count machines
 - Many machines (e.g., cluster of machines in the cloud)
 - SIMD processing + multi-threaded cores require even more parallelism
 - GPU architectures require very large amounts of parallelism
Recall: geometry of the GTX 1080 GPU

- **L2 Cache (2 MB)**
- **GPU memory (DDR5 DRAM)**
- **320 GB/sec**

1.6 GHz clock

20 SM cores per chip

20 x 128 = 2,560 SIMD mul-add ALUs

= 8.1 TFLOPs

Up to 20 x 64 = 1280 interleaved warps per chip (40,960 CUDA threads/chip)

TDP: 180 watts

Chip can concurrently execute up to 40,960 CUDA threads! (programs that do not expose significant amounts of parallelism will not run efficiently on GPUs!)
Recall

- Key part of parallel programming is understanding when dependencies exist between operation.

- Lack of dependencies implies potential for parallel execution.

\[
x = a + b; \\
y = b \times 7; \\
z = (x-y) \times (x+y);
\]
Sequences

- Ordered collection of elements
- For example, in a C++ like language: `sequence<T>`
- e.g., Scala lists: `List[T]`
- In a functional language: `seq T`
Map

- Higher order function
- Apply side-effect free function $f : : a \to b$ to all elements of input sequence, to produce output sequence of the same length

$\text{map} :: (a \to b) \to \text{seq } a \to \text{seq } b$

- E.g., in Scala: `def map[A, B](f: A => B, l: List[A]): List[B]`
Parallelizing map

- Since \(f : : a \rightarrow b \) is a function (it is side effect free), then application of \(f \) to all elements of the sequence can be done in any order without changing the output of the program.

- The implementation has flexibility to reorder/parallelize however it sees fit.

```haskell
map f s =
    partition s into P smaller sequences
    for each subsequence s_i, in parallel
        out_i = execute map f s_i
    out = concatenate out_i’s
```
Fold (fold left)

- Apply f to each element and an accumulated value
 - Seeded by initial value of type b

- $f :: (b, a) \rightarrow b$
- $\text{fold} :: b \rightarrow ((b, a) \rightarrow b) \rightarrow \text{seq} \ a \rightarrow b$

E.g., in Scala:

```
def foldLeft[A, B](init: B, f: (B, A) => B, l: List[A]): B
```

![Diagram showing the fold process](image)
Parallel fold

- Apply f to each element and an accumulated value
 - Seeded by initial value of type b (identity for f and comb)

- $f :: (b,a) \to b$
- $\text{comb} :: (b,b) \to b$
- $\text{fold}_{\text{par}} :: b \to ((b,a) \to b) \to ((b,b)\to b) \to \text{seq} \ a \to b$
Scan

- \(f : (a, a) \rightarrow a \) \hspace{1cm} \text{(associative binary op)}
- \(\text{scan} : a \rightarrow ((a, a) \rightarrow a) \rightarrow \text{seq} a \rightarrow \text{seq} a \)

```c
scan_exclusive(float ident, float* in, float* out, int N) {
    out[0] = ident;
    for (i=1; i<N; i++)
        out[i] = op(out[i-1], in[i-1]);
}
```
Data-parallel scan

let $A = [a_0, a_1, a_2, a_3, \ldots, a_{n-1}]$

let \oplus be an associative binary operator with identity element I

scan_inclusive(\oplus, A) = $[a_0, a_0 \oplus a_1, a_0 \oplus a_1 \oplus a_2, \ldots$

scan_exclusive(\oplus, A) = $[I, a_0, a_0 \oplus a_1, \ldots$

If operator is \oplus, then scan_inclusive(\oplus, A) is a prefix sum

$\text{prefix}_\text{sum}(A) = [a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots$
Data-parallel inclusive scan
(Subtract original vector to get exclusive scan result: not shown)

Work: $O(N \lg N)$
Span: $O(\lg N)$
Work-efficient parallel exclusive scan (O(N) work)
Work efficient exclusive scan algorithm
(with $\oplus = \text{"+"}$)

Up-sweep:
for d=0 to $(\log_2 n - 1)$ do
 forall k=0 to n-1 by 2^{d+1} do
 $a[k + 2^{d+1} - 1] = a[k + 2^{d} - 1] + a[k + 2^{d+1} - 1]$

Down-sweep:
$x[n-1] = 0$
for d=$(\log_2 n - 1)$ down to 0 do
 forall k=0 to n-1 by 2^{d+1} do
 tmp = $a[k + 2^d - 1]$
 $a[k + 2^{d} - 1] = a[k + 2^{d+1} - 1]$
 $a[k + 2^{d+1} - 1] = \text{tmp} + a[k + 2^{d+1} - 1]$

Work: $O(N)$ (but what is the constant?)
Span: $O(\lg N)$ (but what is the constant?)
Locality: ??
Now consider scan implementation on just two cores
Exclusive scan: two processor implementation

| a₀ | a₁ | a₂ | a₃ | a₄ | a₅ | a₆ | a₇ | a₈ | a₉ | a₁₀ | a₁₁ | a₁₂ | a₁₃ | a₁₄ | a₁₅ |

P1

Sequential scan on elements [0-7]

Let base = a₀-7

Add base to elements a₈ thru a₈-11

P2

Sequential scan on elements [8-15]

Add base to elements a₈-12 thru a₈-15

Work: O(N) (but constant is now only 1.5)

Data-access:
- Very high spatial locality (contiguous memory access)
- P1’s access to a₈ through a₈-11 may be more costly on large NUMA system, but on small-scale system access likely same cost as from P2
Exclusive scan: SIMD implementation (in CUDA)

Example: perform exclusive scan on 32-element array: SPMD program, assume 32-wide SIMD execution
When `scan_warp` is run by a group of 32 CUDA threads, each thread returns the exclusive scan result for element `idx`
(also: upon completion `ptr[]` stores inclusive scan result)

```c
__device__ int scan_warp(volatile int *ptr, const unsigned int idx) {
    const unsigned int lane = idx & 31; // index of thread in warp (0..31)
    if (lane >= 1) ptr[idx] = ptr[idx - 1] + ptr[idx];
    if (lane >= 2) ptr[idx] = ptr[idx - 2] + ptr[idx];
    if (lane >= 4) ptr[idx] = ptr[idx - 4] + ptr[idx];
    if (lane >= 8) ptr[idx] = ptr[idx - 8] + ptr[idx];
    if (lane >= 16) ptr[idx] = ptr[idx - 16] + ptr[idx];
    return (lane > 0) ? ptr[idx-1] : 0;
}
```

Work: ??
__device__ int scan_warp(volatile int *ptr, const unsigned int idx) {
 const unsigned int lane = idx & 31; // index of thread in warp (0..31)

 if (lane >= 1) ptr[idx] = ptr[idx - 1] + ptr[idx];
 if (lane >= 2) ptr[idx] = ptr[idx - 2] + ptr[idx];
 if (lane >= 4) ptr[idx] = ptr[idx - 4] + ptr[idx];
 if (lane >= 8) ptr[idx] = ptr[idx - 8] + ptr[idx];
 if (lane >= 16) ptr[idx] = ptr[idx - 16] + ptr[idx];

 return (lane > 0) ? ptr[idx-1] : 0;
}

Work: \(N \log(N) \)

Work-efficient formulation of scan is not beneficial in this context because it results in low SIMD utilization. It would require more than 2x the number of instructions as the implementation above!
Building scan on larger array

Example: 128-element scan using four-warp thread block
Multi-threaded, SIMD implementation

Example: cooperating threads in a CUDA thread block perform scan

We provided similar code in assignment 2.
Code assumes length of array given by \(\text{ptr} \) is same as number of threads per block.

```c
__device__ void scan_block(volatile int *ptr, const unsigned int idx)
{
    const unsigned int lane = idx & 31;     // index of thread in warp (0..31)
    const unsigned int warp_id = idx >> 5;  // warp index in block

    int val = scan_warp(ptr, idx);          // Step 1. per-warp partial scan
                                             // (Performed by all threads in block,
                                             // with threads in same warp communicating
                                             // through shared memory buffer ‘ptr’)

    if (lane == 31)  ptr[warp_id] = ptr[idx];   // Step 2. thread 31 in each warp copies
    __syncthreads();                            // partial-scan bases in per-block
                                             // shared mem

    if (warp_id == 0) scan_warp(ptr, idx);      // Step 3. scan to accumulate bases
    __syncthreads();                            // (only performed by warp 0)

    if (warp_id > 0)                            // Step 4. apply bases to all elements
        val = val + ptr[warp_id-1];             // (performed by all threads in block)
    __syncthreads();

    ptr[idx] = val;
}
```
Building a larger scan

Example: one million element scan (1024 elements per block)

Exceeding 1 million elements requires partitioning phase two into multiple blocks
Scan implementation

- **Parallelism**
 - Scan algorithm features $O(N)$ parallel work
 - But efficient implementations only leverage as much parallelism as required to make good utilization of the machine
 - Goal is to reduce work and reduce communication/synchronization

- **Locality**
 - Multi-level implementation to match memory hierarchy
 (CUDA example: per-block implementation carried out in local memory)

- **Heterogeneity: different strategy at different machine levels**
 - CUDA example: Different algorithm for intra-warp scan than inter-thread scan
 - Low core count CPU example: based largely on sequential scan
Parallel Segmented Scan
Segmented scan

- **Common problem: operating on sequence of sequences**

- **Examples:**
 - For each vertex in a graph:
 - For each edge incoming to vertex:
 - For each particle in simulation
 - For each particle within cutoff radius
 - For each document in a collection
 - For each word in document

- There are two levels of parallelism in the problem that a programmer might want to exploit

- But its irregular: the size of edge lists, particle neighbor lists, words per document, etc, may be very different from vertex to vertex (or particle to particle)
Segmented scan

- Generalization of scan
- Simultaneously perform scans on arbitrary contiguous partitions of input collection

```
let A = [[1,2],[6],[1,2,3,4]]
let ⊕ = +
segmented_scan_exclusive(⊕, A) = [[0,1], [0], [0,1,3,6]]
```

We'll assume a simple “head-flag” representation:

```
A = [[1,2,3],[4,5,6,7,8]]
flag: 0 0 0 1 0 0 0 0
data: 1 2 3 4 5 6 7 8
```
Work-efficient segmented scan (with $\oplus = +$)

Up-sweep:
for $d=0$ to $(\log_2 n - 1)$ do:
 forall $k=0$ to $n-1$ by 2^{d+1} do:
 if $\text{flag}[k + 2^{d+1} - 1] == 0$:
 $\text{data}[k + 2^{d+1} - 1] = \text{data}[k + 2^d - 1] + \text{data}[k + 2^{d+1} - 1]$
 $\text{flag}[k + 2^{d+1} - 1] = \text{flag}[k + 2^d - 1] || \text{flag}[k + 2^{d+1} - 1]$

Down-sweep:
$\text{data}[n-1] = 0$
for $d=(\log_2 n - 1)$ down to 0 do:
 forall $k=0$ to $n-1$ by 2^{d+1} do:
 $\text{tmp} = \text{data}[k + 2^d - 1]$
 $\text{data}[k + 2^d - 1] = \text{data}[k + 2^{d+1} - 1]$
 if $\text{flag_original}[k + 2^d] == 1$: # must maintain copy of original flags
 $\text{data}[k + 2^{d+1} - 1] = 0$ # start of segment
 else if $\text{flag}[k + 2^d - 1] == 1$:
 $\text{data}[k + 2^{d+1} - 1] = \text{tmp}$
 else:
 $\text{data}[k + 2^{d+1} - 1] = \text{tmp} + \text{data}[k + 2^{d+1} - 1]$
 $\text{flag}[k + 2^d - 1] = 0$
Segmented scan

Stanford CS149, Winter 2019
Sparse matrix multiplication example

\[
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
3 & 0 & 1 & \cdots & 0 \\
0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 4 & \cdots & 0 \\
\vdots \\
0 & 2 & 6 & \cdots & 8
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
x_{n-1}
\end{bmatrix}
\]

- Most values in matrix are zero
 - Note: logical parallelization is across per-row dot products
 - But different amounts of work per row (complicates wide SIMD execution)

- Example sparse storage format: compressed sparse row
 - values = [3,1,2,4,...,2,6,8]
 - cols = [0,2,1,2,...]
 - row_starts = [0,2,3,4,...]
Sparse matrix multiplication with scan

values = [[3,1], [2], [4], [2,6,8]]
cols = [[0,2], [1], [2], [1,2,3]]
row_starts = [0, 2, 3, 4]
Scan/segmented scan summary

- **Scan**
 - Parallel implementation of (intuitively sequential application)
 - Theory: parallelism in problem is linear in number of elements
 - Practice: exploit locality, use only as much parallelism as necessary to fill the machine
 - Great example of applying different strategies at different levels of the machine

- **Segmented scan**
 - Express computation and operate on irregular data structures (e.g., list of lists) in a regular, data parallel way
More operations

- **Group by key**
 - Seq (key, T) —> Seq (key, Seq T)
 - Similar to: sort sequence by key, the performing segmented scan operations on segments with same key

- **Filter**
 - remove elements from sequence that do not match predicate
Example: create grid of particles data structure on large parallel machine (e.g., a GPU)

- Problem: place 1M point particles in a 16-cell uniform grid based on 2D position
 - Parallel data structure manipulation problem: build a 2D array of lists
- Recall: Up to 2048 CUDA threads per SM core on a GTX 1080 GPU (20 SM cores)
Common use of this structure: N-body problems

- A common operation is to compute interactions with neighboring particles
- Example: given particle, find all particles within radius R
 - Create grid with cells of size R
 - Only need to inspect particles in surrounding grid cells
Solution 1: parallelize over cells

- One possible answer is to decompose work by cells: for each cell, independently compute particles within it (eliminates contention because no synchronization is required)
 - Insufficient parallelism: only 16 parallel tasks, but need thousands of independent tasks to efficiently utilize GPU
 - Work inefficient: performs 16 times more particle-in-cell computations than sequential algorithm

```c
list cell_lists[16];  // 2D array of lists
for each cell c    // in parallel
  for each particle p  // sequentially
    if (p is within c)
      append p to cell_lists[c]
```
Solution 2: parallelize over particles

- Another answer: assign one particle to each CUDA thread. Thread computes cell containing particle, then atomically updates list.
 - Massive contention: thousands of threads contending for access to update single shared data structure

```c
list cell_list[16];    // 2D array of lists
lock cell_list_lock;

for each particle p // in parallel
    c = compute cell containing p
    lock(cell_list_lock)
    append p to cell_list[c]
    unlock(cell_list_lock)
```
Solution 3: use finer-granularity locks

- Alleviate contention for single global lock by using per-cell locks
 - Assuming uniform distribution of particles in 2D space... ~16x less contention than solution 2

```c
list cell_list[16]; // 2D array of lists
lock cell_list_lock[16];

for each particle p // in parallel
  c = compute cell containing p
  lock(cell_list_lock[c])
  append p to cell_list[c]
  unlock(cell_list_lock[c])
```
Solution 4: compute partial results + merge

Yet another answer: generate N “partial” grids in parallel, then combine

- Example: create N thread blocks (at least as many thread blocks as SM cores)
- All threads in thread block update same grid
 - Enables faster synchronization: contention reduced by factor of N and cost of synchronization is lower because it is performed on block-local variables (in CUDA shared memory)
- Requires extra work: merging the N grids at the end of the computation
- Requires extra memory footprint: Store N grids of lists, rather than 1
Solution 5: data-parallel approach

Step 1: map

compute cell containing each particle (parallel over input particles)

<table>
<thead>
<tr>
<th>particle_index:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid_index:</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Step 2: sort results by cell (particle index array permuted based on sort)

<table>
<thead>
<tr>
<th>particle_index:</th>
<th>3</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid_index:</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Step 3: find start/end of each cell (parallel over particle_index elements)

```cpp
    cell = grid_index[index]
    if (index == 0)
        cell_starts[cell] = index;
    else if (cell != grid_index[index-1]) {
        cell_starts[cell] = index;
        cell_ends[grid_index[index-1]] = index;
    }
    if (index == numParticles-1) // special case for last cell
        cell_ends[cell] = index+1;
```

This solution maintains a large amount of parallelism and removes the need for fine-grained synchronization... at cost of a sort and extra passes over the data (extra BW)

This code is run for each element of the particle_index array. (each innovation has a unique valid of 'index')
Another example: parallel histogram

Consider compute a histogram for a large sequence of values

```c
int bin_func(float value);      // maps array values to bin id’s

float input[N];
int histogram_bins[NUM_BINS];  // assume bins are initialized to 0

for (int i=0; i<N; i++) {
    histogram_bins[bin_func(input[i])]++;
}
```

Create a massively parallel implementation given map() and sort()
Another example: parallel histogram (part 1)

```c
void compute_bin(float* input, int* bin_ids) {
    bin_ids[idx] = bin_func(input[idx]);
}

void find_starts(int* bin_ids, int* starts) {
    if (idx == 0 || bin_ids[idx] != bin_ids[idx-1])
        starts[bin_ids[idx]] = idx;
}

float input[N];
int  bin_ids[N];    // bin_ids[i] = id of bin that element i goes in
int  sorted_bin_idx[N];
int  bin_starts[NUM_BINS]; // initialized to -1

// map bin_func onto input to get bin ids of all elements
launch<<<N>>>(compute_bin(input, bin_ids));

// find starting point of each bin in sorted list
sort(N, bin_ids, sorted_bin_idx);
launch<<<N>>>(find_starts(sorted_bin_idx, bin_starts));
```
Another example: parallel histogram

```c
void bin_sizes(int* bin_starts, int* histogram_bins, int num_items, int num_bins) {
    if (bin_starts[idx] == -1) {
        histogram_bins[idx] = 0; // no items in this bin
    } else {

        // find start of next bin in order to determined size of current bin

        // Tricky edge case: if the next bin is empty, then must search forward to find
        // the next non-empty bin
        int next_idx = idx+1;
        while(next_idx < num_bins && bin_starts[next_idx] == -1)
            id++;

        if (next_idx < num_bins)
            histogram_bins[idx] = bin_starts[next_idx] - bin_starts[idx];
        else
            histogram_bins[idx] = num_items - bin_starts[idx];
    }
}
```

```c
launch<<<NUM_BINS>>>'bin_sizes(bin_starts, histogram_bins, N);
```
Scatter/gather

- Earlier in class we introduced the sequence operations gather and scatter

- gather(index, input, output)
 - output[i] = input[index[i]]

- scatter(index, input, output)
 - output[index[i]] = input[i]
Turning scatter into sort/gather

- Assume elements of index are unique
- \texttt{scatter(index, input, output)}
 - \texttt{output[index[i]] = input[i]}

\texttt{temp = sort input sequence according to values in index sequence}
\texttt{output[i] = temp[i]}
Turning scatter with atomic sort/map/scan

for all elements in sequence
 atomicOp(output[index[i]], input[i])

Assume elements in index are not unique, so synchronization is required for atomicity!

Sort input sequence according to values in index sequence

[0, 0, 0, 1, 1, 2]
[input[2], input[4], input[5], input[0], input[1], input[3]]

Compute starts of each range of the same index number

[1, 0, 0, 1, 0, 1]

Segmented scan (using ‘op’) each range

[op(op(input[2], input[4]), input[5]), op(input[0], input[1]), input[3]]
Summary

- Data parallel thinking:
 - Implementing algorithms in terms of simple (often widely parallelizable, efficiently implemented) operations on large data collections

- Turn irregular parallelism into regular parallelism

- Turn fine-grained synchronization into coarse (barrier) synchronization

- But most solutions require multiple passes over data — bandwidth hungry!
Summary

- Data parallel primitives are basis for many parallel/ distributed systems today
- CUDA's Thrust Library
- Apache Spark / Hadoop

<table>
<thead>
<tr>
<th>Transformations</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(f : T ⇒ U)</td>
<td>RDD[T] ⇒ RDD[U]</td>
</tr>
<tr>
<td>filter(f : T ⇒ Bool)</td>
<td>RDD[T] ⇒ RDD[T]</td>
</tr>
<tr>
<td>flatMap(f : T ⇒ Seq[U])</td>
<td>RDD[T] ⇒ RDD[U]</td>
</tr>
<tr>
<td>sample(fraction : Float)</td>
<td>RDD[T] ⇒ RDD[T] (Deterministic sampling)</td>
</tr>
<tr>
<td>groupByKey()</td>
<td>RDD[(K, V)] ⇒ RDD[(K, Seq[V])]</td>
</tr>
<tr>
<td>reduceByKey(f : (V, V) ⇒ V)</td>
<td>RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
<tr>
<td>union()</td>
<td>RDD[(T), RDD[T]] ⇒ RDD[T]</td>
</tr>
<tr>
<td>join()</td>
<td>RDD[(K, V)], RDD[(K, W)] ⇒ RDD[(K, (V, W))]</td>
</tr>
<tr>
<td>cogroup()</td>
<td>RDD[(K, V)], RDD[(K, W)] ⇒ RDD[(K, (Seq[V], Seq[W]))]</td>
</tr>
<tr>
<td>crossProduct()</td>
<td>RDD[T], RDD[U] ⇒ RDD[T, U]</td>
</tr>
<tr>
<td>mapValues(f : V ⇒ W)</td>
<td>RDD[(K, V)] ⇒ RDD[(K, W)] (Preserves partitioning)</td>
</tr>
<tr>
<td>sort(c : Comparator[K])</td>
<td>RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
<tr>
<td>partitionBy(p : Partitioner[K])</td>
<td>RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
</tbody>
</table>