
Parallel Computing
Stanford CS149, Winter 2019

Lecture 10:

Directory-Based Coherence +
Implementing Synchronization

 Stanford CS149, Winter 2019

Today’s topics

▪ A quick discussion of directory-based cache coherence

▪ Efficiently implementing synchronization primitives
- Primitives for ensuring mutual exclusion

- Locks
- Atomic primitives (e.g., atomic_add)
- Transactions (later in the course)

- Primitives for event signaling
- Barriers

 Stanford CS149, Winter 2019

Review: MSI state transition diagram *

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence

 Stanford CS149, Winter 2019

Example
P0: LD X
P0: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3
P1: LD X
P0: LD X

P0: ST X ← 4
P1: LD X
P0: LD Y

P0: ST Y ← 1

P1: ST Y ← 2

Consider this sequence of loads and stores
to addresses X and Y by processors P0 and P1

Assume that X and Y contain value 0 at start
of execution.

 Stanford CS149, Winter 2019

Directory-based cache coherence

 Stanford CS149, Winter 2019

What you should know
▪ What limits the scalability of snooping-based approaches to

cache coherence?

▪ How does a directory-based scheme avoid these problems?

▪ How can the storage overhead of the directory structure be
reduced? (and at what cost?)

 Stanford CS149, Winter 2019

Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

The snooping cache coherence protocols
discussed last week relied on broadcasting
coherence information to all processors
over the chip interconnect.

Every time a cache miss occurred, the
triggering cache communicated with all
other caches!

We discussed what information was communicated and what actions were taken to
implement the coherence protocol.

We did not discuss how to implement broadcasts on an interconnect.
(one example is to use a shared bus for the interconnect)

 Stanford CS149, Winter 2019

Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall idea of non-uniform access shared memory systems (NUMA): locating regions of memory
near the processors increases scalability: it yields higher aggregate bandwidth and reduced
latency (especially when there is locality in the application)

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled!

Consider this case: processor accesses nearby memory (good...), but to ensure coherence still
must broadcast to all other processors it is doing so (bad...)

Some common terminology:

▪ cc-NUMA = “cache-coherent, non-uniform memory access”

▪ Distributed shared memory system (DSM): cache coherent, shared address space, but
architecture implemented by physically distributed memories

 Stanford CS149, Winter 2019

Intel’s ring interconnect

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

System Agent

Graphics

▪ Multiple rings
- request
- snoop
- ack
- data (32 bytes)

▪ Six interconnect nodes: four
“slices” of L3 cache + system
agent + graphics

▪ Each bank of L3 connected to
ring bus twice

Core

Core

Core

Core

 Stanford CS149, Winter 2019

Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to

determine the state of a line in the other caches

▪ Alternative idea: avoid broadcast by storing information
about the status of the line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the

cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches
on a “need to know” basis (not by broadcast mechanisms)

 Stanford CS149, Winter 2019

A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
 .

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

 Stanford CS149, Winter 2019

A distributed directory

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the corresponding data for the line
Example: node 0 is the home node of the yellow line, node 1 is the home node of the blue line

▪ “Requesting node”: node containing processor requesting line

Example: directory partition is co-located with memory it describes

 Stanford CS149, Winter 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line

▪ Home directory checks entry for line

1. Request: read miss msg

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line
▪ Home directory checks entry for line
- If dirty bit for cache line is OFF, respond with contents from memory, set presence[0] to true

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor (with the most up-to-date copy
of the line)

▪ Home node must tell requesting node where to find data
- Responds with message providing identity of line owner (“get it from P2”)

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of line owner
3. Requesting node requests data from owner
4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of line owner
3. Requesting node requests data from owner
4. Owner responds to requesting node, changes state in cache to SHARED (read only)
5. Owner also responds to home node, home clears dirty, updates presence bits, updates memory

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

Scalable Interconnect

 Stanford CS149, Winter 2019

Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write

 Stanford CS149, Winter 2019

Advantage of directories
▪ On reads, directory tells requesting node exactly where to get

the line from
- Either from home node (if the line is clean)
- Or from the owning node (if the line is dirty)
- Either way, retrieving data involves only point-to-point communication

▪ On writes, the advantage of directories depends on the
number of sharers
- In the limit, if all caches are sharing data, all caches must be

communicated with (just like broadcast in a snooping protocol)

 Stanford CS149, Winter 2019

Cache invalidation patterns
64 processor system

Barnes-Hut

LU Decomposition

Ocean Sim

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

Graphs plot histogram of number
of sharers of a line at the time of
a write

In general only a few processors
share the line (only a few
processors must be told of writes)

Not shown here, but the
expected number of sharers
typically increases slowly with P
(good!)

 Stanford CS149, Winter 2019

In general, only a few sharers during a write
▪ Access patterns

- “Mostly-read” objects: lots of sharers, but writes are infrequent, so communicating with
all sharers on a write has minimal impact on performance

- Migratory objects (one processor reads/writes for while, then another, etc.): very few
sharers, so count does not scale with number of processors

- Frequently read/written objects: frequent invalidations, but sharer count is low because
count cannot build up in short time between invalidations (e.g, shared task queue)

- Low-contention locks: infrequent invalidations, so no performance problem

- High-contention locks: tricky because many readers present when lock released

▪ Implication 1: directories are useful for limiting coherence traffic
- Don’t need a broadcast mechanism to “tell everyone”

▪ Implication 2: suggests ways to optimize directory implementations
(reduce storage overhead)

 Stanford CS149, Winter 2019

How big is the directory?

Scalable Interconnect

Processor

Local Cache

Directory

Memory
. .

 .

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

Cache line: 64 bytes / line
P = 256 processors
Memory size: M bytes

How big is the directory?

 Stanford CS149, Winter 2019

Full bit vector directory representation
▪ Recall: one presence bit per node

▪ Storage proportional to P x M
- P = number of nodes (e.g., processors)
- M = number of lines in memory

▪ Storage overhead rises with P
- Assume 64 byte cache line size (512 bits)
- 64 nodes (P=64) →12% overhead
- 256 nodes (P=256) → 50% overhead
- 1024 nodes (P=1024) → 200% overhead

. .
 .

P

M

. . .

 Stanford CS149, Winter 2019

Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme

- Increase cache line size (reduce M term)
- What are possible problems with this approach?

(consider graphs from last lecture)

- Group multiple processors into a single directory “node” (reduce P term)

- Need only one directory bit per node, not one bit per processor

- Hierarchical: could use snooping protocol to maintain coherence among
processors in a node, directory across nodes

▪ We will now discuss one alternative scheme
- Limited pointer schemes (reduce P)

 Stanford CS149, Winter 2019

Limited pointer schemes
Since data is expected to only be in a few caches at once, storage for a limited number
of pointers per directory entry should be sufficient (only need a list of the nodes
holding a valid copy of the line!)

Ocean Sim

Example: 1024 processor system

Full bit vector scheme needs 1024 bits per line

Instead, can store ~100 pointers to nodes holding the line (log2(1024)=10 bits per pointer)

In practice, our workload evaluation says we can get by with far less than this

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

 Stanford CS149, Winter 2019

Managing overflow in limited pointer schemes

▪ Fallback to broadcast (if broadcast mechanism exists)
- When more than max number of sharers, revert to broadcast

▪ If no broadcast mechanism is present on machine
- Do not allow more than a max number of sharers
- On overflow, newest sharer replaces an existing one

(must invalidate line in the old sharer’s cache)

▪ Coarse vector fallback
- Revert to bit vector representation representation
- Each bit corresponds to K nodes
- On write, invalidate all nodes a bit corresponds to

 Stanford CS149, Winter 2019

Optimizing for the common case

Limited pointer schemes are a great example of smartly
understanding and optimizing for the common case:

1. Workload-driven observation: in general the number of cache line sharers is low

2. Make the common case simple and fast: array of pointers for first N sharers

3. Uncommon case is still handled correctly, just with a slower, more complicated
mechanism (the program still works!)

4. Extra expense of the complicated solution is tolerable, since it happens
infrequently

 Stanford CS149, Winter 2019

Limited pointer schemes: summary
▪ Limited pointer schemes reduce directory storage

overhead caused by large P
- By adopting a compact representation of a list of sharers

▪ But do we really even need to maintain a list of
sharers for each cache-line-sized chunk of data in
memory?

. .
 .

P

M

. . .

Directory

 Stanford CS149, Winter 2019

Limiting size of directory

▪ Key observation: the majority of memory is NOT resident in
cache. And to carry out coherence protocol the system only
needs sharing information for lines that are currently in cache
- Most directory entries are empty most of the time
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are empty

 Stanford CS149, Winter 2019

Directory coherence in Intel Core i7 CPU
▪ L3 serves as centralized directory

for all lines in the L3 cache
(Since L3 is an inclusive cache, any line in L2 is
guaranteed to also be resident in L3)

▪ Directory maintains list of L2
caches containing line

▪ Instead of broadcasting
coherence traffic to all L2’s, only
send coherence messages to L2’s
that contain the line
(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

 Stanford CS149, Winter 2019

Coherence in multi-socket Intel systems

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Cache Agent Cache Agent

Memory Controller Memory Controller

Home Agent Home AgentQuickPath
Interconnect

(QPI)

to DRAM…
(with in memory directory)

Dir cache (16KB) Dir cache (16KB)

to DRAM…
(in memory directory)

▪ L3 directory reduces on-chip
coherence traffic (previous slide)

▪ In-memory directory (cached by home
agent/memory controller) reduces
coherence traffic between cores

 Stanford CS149, Winter 2019

Xeon Phi (Knights Landing) 2015
▪ “Knights Landing” (KNL)

▪ 72 cores
- Two 16-wide SIMD (AVX512) units
- 4-way multi-threading

▪ Grouped into 36 tiles
- 1MB L2 cache per tile

▪ Peak: 6 TFLOPs (single precision)

▪ 16 GB of on-package RAM

▪ Up to 384 GB of of-package DRAM

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
 DDR4: 6 channels @ 2400 up to 384GB
IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

TILE

4

2 VPU

Core

2 VPU

Core

1MB
L2

CHA

Package

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and
are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change
without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth
numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been
estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system
hardware or software design or configuration may affect actual performance. Omni-path not shown

EDC EDC PCIe
Gen 3

EDC EDC

Tile

DDR MC DDR MC

EDC EDC misc EDC EDC

36 Tiles
connected by

2D Mesh
Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
R
4

C
H
A
N
N
E
L
S

3

D
D
R
4

C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2 x16
1 x4

X4
DMI

 Stanford CS149, Winter 2019

Xeon Phi cache coherence
KNL Mesh Interconnect

Mesh of Rings
� Every row and column is a (half) ring

� YX routing: Go in Y Æ Turn Æ Go in X

� Messages arbitrate at injection and on
turn

Cache Coherent Interconnect
� MESIF protocol (F = Forward)

� Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

▪ Nodes organized as 2D mesh
- Some nodes are tiles
- Others are memory

interfaces

▪ X/Y routing to send messages
- Send horizontally along row
first, then vertically

▪ Directory based scheme for
cache coherence

“Slide credit: Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor” A. Sodani (Hot Chips 2015)

 Stanford CS149, Winter 2019

Xeon Phi: all-to-all mode directory coherenceCluster Mode: All-to-All
Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Most general mode. Lower
performance than other modes.

Typical Read L2 miss
1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

14

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

▪ Directory home tile (node)
determined by hash of
addresses to tiles

▪ Step 1 (of a memory access):
check directory in address’
home directory node

▪ Step 2: if miss (line not
referenced in directory), must
go to memory to retrieve data

▪ Step 3: memory responds
directly to requestor

“Slide credit: Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor” A. Sodani (Hot Chips 2015)

 Stanford CS149, Winter 2019

Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t need

broadcast to ensure coherence because often the number of caches
containing a copy of a line is small

▪ Instead of snooping, just store the list of sharers in a “directory” and check
the list as necessary

▪ One challenge: reducing overhead of directory storage
- Use hierarchies of processors or larger line sizes
- Limited pointer schemes: exploit fact the most processors not sharing line
- Exploit fact that most lines are not in cache

 Stanford CS149, Winter 2019

Implementing Synchronization

Now that you understand implementations of cache coherence, the
cost of implementing synchronization primitives on a modern

machine will become very apparent.

 Stanford CS149, Winter 2019

Three phases of a synchronization event

1. Acquire method
- How a thread attempts to gain access to protected resource

2. Waiting algorithm
- How a thread waits for access to be granted to shared resource

3. Release method
- How thread enables other threads to gain resource when its

work in the synchronized region is complete

 Stanford CS149, Winter 2019

Busy waiting

▪ Busy waiting (a.k.a. “spinning”)
while (condition X not true) {}

logic that assumes X is true

▪ In classes like CS107/CS110 or in operating systems, you have
certainly also talked about synchronization
- You might have been taught busy-waiting is bad: why?

 Stanford CS149, Winter 2019

“Blocking” synchronization
▪ Idea: if progress cannot be made because a resource cannot

be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)

if (condition X not true)

 block until true; // OS scheduler de-schedules thread

 // (let’s another thread use the processor)

▪ pthreads mutex example

pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

 Stanford CS149, Winter 2019

Busy waiting vs. blocking
▪ Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time
- A processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

▪ Examples:
int lock;

OSSpinLockLock(&lock); // OSX spin lock

pthread_spinlock_t spin;

pthread_spin_lock(&spin);

 Stanford CS149, Winter 2019

Implementing Locks

 Stanford CS149, Winter 2019

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld R0, mem[addr] // load word into R0
cmp R0, #0 // compare R0 to 0
bnz lock // if nonzero jump to top
st mem[addr], #1

st mem[addr], #0 // store 0 to address

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

 Stanford CS149, Winter 2019

Test-and-set based lock

Atomic test-and-set instruction:
ts R0, mem[addr] // load mem[addr] into R0

 // if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

 Stanford CS149, Winter 2019

Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)
Invalidate line

= thread has lock

 Stanford CS149, Winter 2019

Check your understanding

▪ On the previous slide, what is the duration of time the thread
running on P1 holds the lock?

▪ At what points in time does P1’s cache contain a valid copy of
the cache line containing the lock variable?

 Stanford CS149, Winter 2019

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

 Stanford CS149, Winter 2019

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)

lock cmpxchg dst, src

if (dst == EAX)
 ZF = 1
 dst = src
else
 ZF = 0
 EAX = dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

bool compare_and_swap(int* x, int a, int b) {
 if (*x == a) {
 *x = b;
 return true;
 }

 return false;
}

Self-check: Can you implement assembly for
atomic compare-and-swap using cmpxchg?

 Stanford CS149, Winter 2019

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in

succession with as little traffic as possible

▪ Scalability
- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost

▪ Fairness
- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling,
low storage cost (one int), no provisions for fairness

 Stanford CS149, Winter 2019

Test-and-test-and-set lock
void Lock(int* lock) {
 while (1) {

 while (*lock != 0);

 if (test_and_set(*lock) == 0)
 return;
 }
}

void Unlock(int* lock) {
 *lock = 0;
}

// while another processor has the lock…
// (assume *lock is NOT register allocated)

// when lock is released, try to acquire it

 Stanford CS149, Winter 2019

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd
BusRdX
Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX
Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

 Stanford CS149, Winter 2019

Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

 Stanford CS149, Winter 2019

Test-and-set lock with back off

void Lock(volatile int* l) {
 int amount = 1;
 while (1) {
 if (test_and_set(*l) == 0)
 return;
 delay(amount);
 amount *= 2;
 }
}

Upon failure to acquire lock, delay for awhile before retrying

▪ Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)
▪ Improves scalability (due to less traffic)
▪ Storage cost unchanged (still one int for lock)
▪ Exponential back-off can cause severe unfairness
- Newer requesters back off for shorter intervals

 Stanford CS149, Winter 2019

Ticket lock
Main problem with test-and-set style locks: upon
release, all waiting processors attempt to acquire lock
using test-and-set

struct lock {
 int next_ticket;
 int now_serving;
};

void Lock(lock* l) {
 int my_ticket = atomic_increment(&l->next_ticket); // take a “ticket”
 while (my_ticket != l->now_serving); // wait for number
} // to be called

void unlock(lock* l) {
 l->now_serving++;
}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

 Stanford CS149, Winter 2019

Array-based lock
Each processor spins on a different memory address
Utilizes atomic operation to assign address on attempt to acquire
struct lock {
 padded_int status[P]; // padded to keep off same cache line
 int head;
};

int my_element;

void Lock(lock* l) {
 my_element = atomic_circ_increment(&l->head); // assume circular increment
 while (l->status[my_element] == 1);
}

void unlock(lock* l) {
 l->status[my_element] = 1;
 l->status[circ_next(my_element)] = 0; // next() gives next index
}

O(1) interconnect traffic per release, but lock requires space linear in P
Also, the atomic circular increment is a more complex operation (higher overhead)

 Stanford CS149, Winter 2019

Additional atomic operations

 Stanford CS149, Winter 2019

Atomic operations provided by CUDA
int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

 Stanford CS149, Winter 2019

Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {
 int old = *addr;
 *addr = (old == compare) ? val : old;
 return old;
}

int atomic_min(int* addr, int x) {
 int old = *addr;
 int new = min(old, x);
 while (atomicCAS(addr, old, new) != old) {
 old = *addr;
 new = min(old, x);
 }
}

What about these operations?
int atomic_increment(int* addr, int x); // for signed values of x
void lock(int* addr);

 Stanford CS149, Winter 2019

Load-linked, store conditional (LL/SC)

▪ Pair of corresponding instructions (not a single atomic
instruction like compare-and-swap)
- load_linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn’t been written to since
corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX

▪ How might LL/SC be implemented on a cache coherent
processor?

 Stanford CS149, Winter 2019

C++ 11 atomic<T>

atomic<int> i;
i++; // atomically increment i

int a = i;
// do stuff
i.compare_exchange_strong(a, 10); // if i has same value as a, set i to 10
bool b = i.is_lock_free(); // true if implementation of atomicity
 // is lock free

▪ Provides atomic read, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic

instructions (if T is a basic type)

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

▪ Will be useful if implementing the ideas in our future lock-free
programming lecture

 Stanford CS149, Winter 2019

Implementing Barriers

 Stanford CS149, Winter 2019

Implementing a centralized barrier
(Barrier for P processors, based on shared counter)

Does it work? Consider:
do stuff ...
Barrier(b, P);
do more stuff ...
Barrier(b, P);

struct Barrier_t {
 LOCK lock;
 int counter; // initialize to 0
 int flag;
};

// parameter p gives number of processors that should hit the barrier
void Barrier(Barrier_t* b, int p) {
 lock(b->lock);
 if (b->counter == 0) {
 b->flag = 0; // first thread arriving at barrier clears flag
 }
 int num_arrived = ++(b->counter);
 unlock(b->lock);

 if (num_arrived == p) { // last arriver sets flag
 b->counter = 0;
 b->flag = 1;
 }
 else {
 while (b->flag == 0); // wait for flag
 }
}

 Stanford CS149, Winter 2019

Correct centralized barrier
struct Barrier_t {
 LOCK lock;
 int arrive_counter; // initialize to 0 (number of threads that have arrived)
 int leave_counter; // initialize to P (number of threads that have left barrier)
 int flag;
};

void Barrier(Barrier_t* b, int p) {
 lock(b->lock);
 if (b->arrive_counter == 0) { // if first to arrive...
 if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
 b->flag = 0; // first arriving thread clears flag
 } else {
 unlock(lock);
 while (b->leave_counter != P); // wait for all threads to leave before clearing
 lock(lock);
 b->flag = 0; // first arriving thread clears flag
 }
 }
 int num_arrived = ++(b->arrive_counter);
 unlock(b->lock);

 if (num_arrived == p) { // last arriver sets flag
 b->arrive_counter = 0;
 b->leave_counter = 1;
 b->flag = 1;
 }
 else {
 while (b->flag == 0); // wait for flag
 lock(b->lock);
 b->leave_counter++;
 unlock(b->lock);
 }

Main idea: wait for all processes to
leave first barrier, before clearing
flag for entry into the second

 Stanford CS149, Winter 2019

Centralized barrier with sense reversal
struct Barrier_t {
 LOCK lock;
 int counter; // initialize to 0
 int flag; // initialize to 0
};

int private_sense = 0; // private per processor. Main idea: processors wait
 // for flag to be equal to private_sense

void Barrier(Barrier_t* b, int p) {
 private_sense = (private_sense == 0) ? 1 : 0;
 lock(b->lock);
 int num_arrived = ++(b->counter);
 if (b->counter == p) { // last arriver sets flag
 unlock(b->lock);
 b->counter = 0;
 b->flag = private_sense;
 }
 else {
 unlock(b->lock);
 while (b.flag != private_sense); // wait for flag
 }

Sense reversal optimization results in one spin instead of two

 Stanford CS149, Winter 2019

Centralized barrier: traffic
▪ O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock
- So span (latency) of entire operation is O(P)

- Can we do better?

 Stanford CS149, Winter 2019

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in more complex interconnect topologies
- lg(P) span (latency)

▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter
- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized Barrier Combining Tree Barrier

High contention!
(e.g., single barrier
lock and counter)

 Stanford CS149, Winter 2019

Coming up…
▪ Imagine you have a shared variable for which contention is low.

So it is unlikely that two processors will enter the critical section
at the same time?

▪ You could hope for the best, and avoid the overhead of taking the
lock since it is likely that mechanisms for ensuring mutual
exclusion are not needed for correctness
- Take a “optimize-for-the-common-case” attitude

▪ What happens if you take this approach and you’re wrong: in the
middle of the critical region, another process enters the same
region?

 Stanford CS149, Winter 2019

Preview: transactional memory
atomic

{ // begin transaction

 perform atomic computation here ...

} // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no
synchronization was necessary. (it speculates!)

System provides hardware/software support for “rolling back” all loads and
stores in the critical region if it detects (at run-time) that another thread has
entered same region at the same time.

