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Today’s topics

▪ A quick discussion of directory-based cache coherence 

▪ Efficiently implementing synchronization primitives 
- Primitives for ensuring mutual exclusion 

- Locks 
- Atomic primitives (e.g., atomic_add) 
- Transactions (later in the course)  

- Primitives for event signaling 
- Barriers
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Review: MSI state transition diagram *

S 
(Shared)

M 
(Modified)

PrRd / -- 
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller,  action B is taken

I 
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence
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Example
P0:  LD X 
P0:  LD X 

P0:  ST X ← 1 

P0:  ST X ← 2 

P1:  ST X ← 3 
P1:  LD X 
P0:  LD X 

P0:  ST X ← 4 
P1:  LD X  
P0:  LD Y 

P0:  ST Y ← 1 

P1:  ST Y ← 2

Consider this sequence of loads and stores 
to addresses X and Y by processors P0 and P1

Assume that X and Y contain value 0 at start 
of execution.
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Directory-based cache coherence
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What you should know
▪ What limits the scalability of snooping-based approaches to 

cache coherence? 

▪ How does a directory-based scheme avoid these problems? 

▪ How can the storage overhead of the directory structure be 
reduced? (and at what cost?) 
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Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

The snooping cache coherence protocols 
discussed last week relied on broadcasting 
coherence information to all processors 
over the chip interconnect. 

Every time a cache miss occurred, the 
triggering cache communicated with all 
other caches!

We discussed what information was communicated and what actions were taken to 
implement the coherence protocol. 

We did not discuss how to implement broadcasts on an interconnect. 
(one example is to use a shared bus for the interconnect)
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Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall idea of non-uniform access shared memory systems (NUMA): locating regions of memory 
near the processors increases scalability: it yields higher aggregate bandwidth and reduced 
latency (especially when there is locality in the application) 

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled! 

Consider this case: processor accesses nearby memory (good...), but to ensure coherence still 
must broadcast to all other processors it is doing so (bad...)  

Some common terminology: 

▪ cc-NUMA = “cache-coherent, non-uniform memory access” 

▪ Distributed shared memory system (DSM): cache coherent, shared address space, but 
architecture implemented by physically distributed memories
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Intel’s ring interconnect

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

System Agent

Graphics

▪ Multiple rings 
- request 
- snoop 
- ack 
- data (32 bytes) 

▪ Six interconnect nodes: four 
“slices” of L3 cache + system 
agent + graphics 

▪ Each bank of L3 connected to 
ring bus twice 

Core

Core

Core

Core
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Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to 

determine the state of a line in the other caches 

▪ Alternative idea: avoid broadcast by storing information 
about the status of the line in one place: a “directory” 
- The directory entry for a cache line contains information about the state of the 

cache line in all caches. 

- Caches look up information from the directory as necessary 

- Cache coherence is maintained by point-to-point messages between the caches 
on a “need to know” basis  (not by broadcast mechanisms) 
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A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
 .

One cache line of memory

One directory entry per 
cache line of memory

P presence bits: indicate whether processor P 
has line in its cache

Dirty bit: indicates line is dirty 
in one of the processors’ caches
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A distributed directory

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the corresponding data for the line 
Example: node 0 is the home node of the yellow line, node 1 is the home node of the blue line 

▪ “Requesting node”: node containing processor requesting line

Example: directory partition is co-located with memory it describes
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Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line 

▪ Home directory checks entry for line

1. Request: read miss msg 

Scalable Interconnect
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Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line 
▪ Home directory checks entry for line 
- If dirty bit for cache line is OFF, respond with contents from memory, set presence[0] to true 

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg 

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor (with the most up-to-date copy 
of the line) 

▪ Home node must tell requesting node where to find data 
- Responds with message providing identity of line owner (“get it from P2”)  

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor 
2. Home node responds with message providing identity of line owner   
3. Requesting node requests data from owner 
4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor 
2. Home node responds with message providing identity of line owner   
3. Requesting node requests data from owner 
4. Owner responds to requesting node, changes state in cache to SHARED (read only) 
5. Owner also responds to home node, home clears dirty, updates presence bits, updates memory

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

Scalable Interconnect
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Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write
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Advantage of directories
▪ On reads, directory tells requesting node exactly where to get 

the line from 
- Either from home node (if the line is clean) 
- Or from the owning node (if the line is dirty) 
- Either way, retrieving data involves only point-to-point communication 

▪ On writes, the advantage of directories depends on the 
number of sharers 
- In the limit, if all caches are sharing data, all caches must be 

communicated with (just like broadcast in a snooping protocol)
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Cache invalidation patterns
64 processor system

Barnes-Hut

LU Decomposition

Ocean Sim
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Graphs plot histogram of number 
of sharers of a line at the time of 
a write 

In general only a few processors 
share the line (only a few 
processors must be told of writes) 

Not shown here, but the 
expected number of sharers 
typically increases slowly with P 
(good!) 
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In general, only a few sharers during a write 
▪ Access patterns 

- “Mostly-read” objects: lots of sharers, but writes are infrequent, so communicating with 
all sharers on a write has minimal impact on performance 

- Migratory objects (one processor reads/writes for while, then another, etc.): very few 
sharers, so count does not scale with number of processors  

- Frequently read/written objects: frequent invalidations, but sharer count is low because 
count cannot build up in short time between invalidations (e.g, shared task queue) 

- Low-contention locks: infrequent invalidations, so no performance problem 

- High-contention locks: tricky because many readers present when lock released  

▪ Implication 1: directories are useful for limiting coherence traffic 
- Don’t need a broadcast mechanism to “tell everyone” 

▪ Implication 2: suggests ways to optimize directory implementations 
(reduce storage overhead)
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How big is the directory?

Scalable Interconnect

Processor

Local Cache

Directory

Memory
. .

 .

One cache line of memory

One directory entry per 
cache line of memory

P presence bits: indicate whether processor P 
has line in its cache

Dirty bit: indicates line is dirty 
in one of the processors’ caches

Cache line: 64 bytes / line 
P = 256 processors 
Memory size: M bytes 

How big is the directory?
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Full bit vector directory representation
▪ Recall: one presence bit per node 

▪ Storage proportional to P x M 
- P = number of nodes (e.g., processors) 
- M = number of lines in memory 

▪ Storage overhead rises with P 
- Assume 64 byte cache line size (512 bits) 
- 64 nodes (P=64)  →12% overhead  
- 256 nodes (P=256) → 50% overhead 
- 1024 nodes (P=1024) → 200% overhead

. .
 .

P

M

. . .
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Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme 

- Increase cache line size (reduce M term) 
- What are possible problems with this approach? 

(consider graphs from last lecture) 

- Group multiple processors into a single directory “node” (reduce P term) 

- Need only one directory bit per node, not one bit per processor 

- Hierarchical: could use snooping protocol to maintain coherence among 
processors in a node, directory across nodes 

▪ We will now discuss one alternative scheme 
- Limited pointer schemes (reduce P)
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Limited pointer schemes
Since data is expected to only be in a few caches at once, storage for a limited number 
of pointers per directory entry should be sufficient (only need a list of the nodes 
holding a valid copy of the line!)

Ocean Sim

Example: 1024 processor system 

Full bit vector scheme needs 1024 bits per line 

Instead, can store ~100 pointers to nodes holding the line (log2(1024)=10 bits per pointer) 

In practice, our workload evaluation says we can get by with far less than this
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Managing overflow in limited pointer schemes

▪ Fallback to broadcast (if broadcast mechanism exists) 
- When more than max number of sharers, revert to broadcast 

▪ If no broadcast mechanism is present on machine 
- Do not allow more than a max number of sharers 
- On overflow, newest sharer replaces an existing one 

(must invalidate line in the old sharer’s cache) 

▪ Coarse vector fallback 
- Revert to bit vector representation representation 
- Each bit corresponds to K nodes 
- On write, invalidate all nodes a bit corresponds to
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Optimizing for the common case

Limited pointer schemes are a great example of smartly 
understanding and optimizing for the common case:

1. Workload-driven observation: in general the number of cache line sharers is low 

2. Make the common case simple and fast: array of pointers for first N sharers 

3. Uncommon case is still handled correctly, just with a slower, more complicated 
mechanism (the program still works!) 

4. Extra expense of the complicated solution is tolerable, since it happens 
infrequently
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Limited pointer schemes: summary
▪ Limited pointer schemes reduce directory storage 

overhead caused by large P 
- By adopting a compact representation of a list of sharers 

▪ But do we really even need to maintain a list of 
sharers for each cache-line-sized chunk of data in 
memory?

. .
 .

P

M

. . .

Directory



 Stanford CS149, Winter 2019

Limiting size of directory

▪ Key observation:  the majority of memory is NOT resident in 
cache.  And to carry out coherence protocol the system only 
needs sharing information for lines that are currently in cache 
- Most directory entries are empty most of the time 
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are empty
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Directory coherence in Intel Core i7 CPU
▪ L3 serves as centralized directory 

for all lines in the L3 cache 
(Since L3 is an inclusive cache, any line in L2 is 
guaranteed to also be resident in L3) 

▪ Directory maintains list of L2 
caches containing line  

▪ Instead of broadcasting 
coherence traffic to all L2’s, only 
send coherence messages to L2’s 
that contain the line 
(Core i7 interconnect is a ring, it is not a bus) 

▪ Directory dimensions: 
- P=4 
- M = number of L3 cache lines 

Core

L1 Data Cache

L2 Cache

Shared L3 Cache 
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache
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Coherence in multi-socket Intel systems

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Cache Agent Cache Agent

Memory Controller Memory Controller

Home Agent Home AgentQuickPath 
Interconnect 

(QPI)

to DRAM… 
(with in memory directory)

Dir cache (16KB) Dir cache (16KB)

to DRAM… 
(in memory directory)

▪ L3 directory reduces on-chip 
coherence traffic (previous slide) 

▪ In-memory directory (cached by home 
agent/memory controller) reduces 
coherence traffic between cores
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Xeon Phi (Knights Landing) 2015
▪ “Knights Landing” (KNL) 

▪ 72 cores 
- Two 16-wide SIMD (AVX512) units 
- 4-way multi-threading 

▪ Grouped into 36 tiles 
- 1MB L2 cache per tile 

▪ Peak: 6 TFLOPs (single precision) 

▪ 16 GB of on-package RAM 

▪ Up to 384 GB of of-package DRAM

Knights Landing Overview 

Chip: 36 Tiles interconnected by 2D Mesh 
Tile: 2 Cores + 2 VPU/core + 1 MB L2 
 
Memory: MCDRAM: 16 GB on-package; High BW 
                  DDR4: 6 channels @ 2400  up to 384GB  
IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset 
Node: 1-Socket only 
Fabric: Omni-Path on-package (not shown) 
 
Vector Peak Perf: 3+TF DP and 6+TF SP Flops 
Scalar Perf: ~3x over Knights Corner 
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ 

TILE 

4 

2 VPU 

Core 

2 VPU 

Core 

 
1MB 
L2 

CHA 

Package 

Source Intel:  All products, computer systems, dates and figures specified are preliminary based on current expectations, and 
are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change 
without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth 
numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been 
estimated based on internal Intel analysis and are provided for informational purposes only.  Any difference in system 
hardware or software design or configuration may affect actual performance.  Omni-path not shown 

EDC EDC PCIe 
Gen 3

EDC EDC

Tile

DDR MC DDR MC

EDC EDC misc EDC EDC

36 Tiles 
connected by 

2D Mesh 
Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
R
4
 

C
H
A
N
N
E
L
S

3

D
D
R
4
 

C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2 x16
1 x4

X4 
DMI
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Xeon Phi cache coherence
KNL Mesh Interconnect 

Mesh of Rings 
� Every row and column is a (half) ring 

� YX routing: Go in Y Æ Turn Æ Go in X 

� Messages arbitrate at injection and on 
turn 

 

Cache Coherent Interconnect 
� MESIF protocol (F = Forward) 

� Distributed directory to filter snoops 

 

Three Cluster Modes 
(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 

▪ Nodes organized as 2D mesh 
- Some nodes are tiles 
- Others are memory 

interfaces 

▪ X/Y routing to send messages 
- Send horizontally along row 
first, then vertically 

▪ Directory based scheme for 
cache coherence

“Slide credit: Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor” A. Sodani (Hot Chips 2015)
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Xeon Phi: all-to-all mode directory coherenceCluster Mode: All-to-All 
Address uniformly hashed across all 
distributed directories 
 

No affinity between Tile, Directory and 
Memory 
 

Most general mode. Lower 
performance than other modes.  
 

Typical Read L2 miss 
1. L2 miss encountered 

2. Send request to the distributed directory 

3. Miss in the directory. Forward to memory 

4. Memory sends the data to the requestor 

14 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1 

2 

3 

4 

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 

▪ Directory home tile (node) 
determined by hash of 
addresses to tiles 

▪ Step 1 (of a memory access): 
check directory in address’ 
home directory node 

▪ Step 2: if miss (line not 
referenced in directory), must 
go to memory to retrieve data 

▪ Step 3: memory responds 
directly to requestor

“Slide credit: Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor” A. Sodani (Hot Chips 2015)
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Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t need 

broadcast to ensure coherence because often the number of caches 
containing a copy of a line is small 

▪ Instead of snooping, just store the list of sharers in a “directory” and check 
the list as necessary 

▪  One challenge: reducing overhead of directory storage 
- Use hierarchies of processors or larger line sizes  
- Limited pointer schemes: exploit fact the most processors not sharing line 
- Exploit fact that most lines are not in cache
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Implementing Synchronization

Now that you understand implementations of cache coherence, the 
cost of implementing synchronization primitives on a modern 

machine will become very apparent.
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Three phases of a synchronization event

1. Acquire method 
- How a thread attempts to gain access to protected resource 

2. Waiting algorithm 
- How a thread waits for access to be granted to shared resource 

3. Release method 
- How thread enables other threads to gain resource when its 

work in the synchronized region is complete
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Busy waiting

▪ Busy waiting (a.k.a. “spinning”) 
while (condition X not true) {} 

logic that assumes X is true 

▪ In classes like CS107/CS110 or in operating systems, you have 
certainly also talked about synchronization 
- You might have been taught busy-waiting is bad: why?
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“Blocking” synchronization
▪ Idea: if progress cannot be made because a resource cannot 

be acquired, it is desirable to free up execution resources for 
another thread (preempt the running thread) 

if (condition X not true) 

   block until true;  // OS scheduler de-schedules thread 

                         // (let’s another thread use the processor) 

▪ pthreads mutex example 

pthread_mutex_t mutex; 

pthread_mutex_lock(&mutex);
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Busy waiting vs. blocking
▪ Busy-waiting can be preferable to blocking if: 

- Scheduling overhead is larger than expected wait time 
- A processor’s resources not needed for other tasks 

- This is often the case in a parallel program since we usually don’t oversubscribe 
a system when running a performance-critical parallel app  (e.g., there aren’t 
multiple CPU-intensive programs running at the same time) 

- Clarification: be careful to not confuse the above statement with the value of 
multi-threading (interleaving execution of multiple threads/tasks to hiding 
long latency of memory operations) with other work within the same app. 

▪ Examples:
int lock; 

OSSpinLockLock(&lock);   // OSX spin lock

pthread_spinlock_t spin; 

pthread_spin_lock(&spin);    
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Implementing Locks
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Warm up: a simple, but incorrect, lock

lock:

unlock:

ld   R0, mem[addr]      // load word into R0 
cmp  R0, #0             // compare R0 to 0 
bnz  lock               // if nonzero jump to top 
st   mem[addr], #1           

st   mem[addr], #0      // store 0 to address          

Problem: data race because LOAD-TEST-STORE is not atomic! 
Processor 0 loads address X, observes 0 
Processor 1 loads address X, observes 0 
Processor 0 writes 1 to address X 
Processor 1 writes 1 to address X
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Test-and-set based lock

Atomic test-and-set instruction: 
ts R0, mem[addr]       // load mem[addr] into R0 

                       // if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts   R0, mem[addr]        // load word into R0       
bnz  R0, lock             // if 0, lock obtained         

st   mem[addr], #0        // store 0 to address          
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Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX 

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX 
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX 
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX 
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX 
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX 
Update line in cache (set to 1)

Invalidate line
BusRdX 
Update line in cache (set to 0)
Invalidate line

= thread has lock
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Check your understanding

▪ On the previous slide, what is the duration of time the thread 
running on P1 holds the lock? 

▪ At what points in time does P1’s cache contain a valid copy of 
the cache line containing the lock variable?
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Test-and-set lock performance

Benchmark executes: 
lock(L); 
critical-section(c) 
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors 
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of 
time to transfer lock (lock holder must 
wait to acquire bus to release) 

Not shown: bus contention also slows 
down execution of critical section 

Figure credit: Culler, Singh, and Gupta



 Stanford CS149, Winter 2019

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix) 

lock cmpxchg dst, src

if (dst == EAX) 
    ZF = 1 
    dst = src 
else 
    ZF = 0 
    EAX = dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

bool compare_and_swap(int* x, int a, int b) { 
   if (*x == a) { 
     *x = b; 
     return true; 
   } 

   return false; 
}

Self-check: Can you implement assembly for 
atomic compare-and-swap using cmpxchg?
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Desirable lock performance characteristics
▪ Low latency 

- If lock is free and no other processors are trying to acquire it, a processor should 
be able to acquire the lock quickly 

▪ Low interconnect traffic 
- If all processors are trying to acquire lock at once, they should acquire the lock in 

succession with as little traffic as possible 

▪ Scalability 
- Latency / traffic should scale reasonably with number of processors 

▪ Low storage cost 

▪ Fairness 
- Avoid starvation or substantial unfairness 

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, 
low storage cost (one int), no provisions for fairness       
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Test-and-test-and-set lock
void Lock(int* lock) { 
  while (1) { 
     
    while (*lock != 0); 
     
     
     
    if (test_and_set(*lock) == 0) 
      return; 
  } 
} 

void Unlock(int* lock) { 
   *lock = 0; 
}

// while another processor has the lock… 
// (assume *lock is NOT register allocated) 

// when lock is released, try to acquire it         
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Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX 

Update line in cache (set to 1) 

[P1 is holding lock...] 

BusRdX 

Update line in cache (set to 0) 

Invalidate line

Invalidate line 

BusRd 

[Many reads from local cache] 

Invalidate line 

BusRd 
BusRdX 
Update line in cache (set to 1) 

Invalidate line

Processor 3
Invalidate line 

BusRd 

[Many reads from local cache] 

Invalidate line 

BusRd 

BusRdX 
Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock
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Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case 

- Must test... then test-and-set 

▪ Generates much less interconnect traffic 
- One invalidation, per waiting processor, per lock release (O(P) invalidations) 

- This is O(P2) interconnect traffic if all processors have the lock cached 

- Recall: test-and-set lock generated one invalidation per waiting processor per test 

▪ More scalable (due to less traffic) 

▪ Storage cost unchanged (one int) 

▪ Still no provisions for fairness
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Test-and-set lock with back off

void Lock(volatile int* l) { 
  int amount = 1; 
  while (1) { 
    if (test_and_set(*l) == 0) 
      return; 
    delay(amount); 
    amount *= 2; 
  } 
}

Upon failure to acquire lock, delay for awhile before retrying

▪ Same uncontended latency as test-and-set, but potentially higher latency under 
contention. Why? 

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock) 
▪ Improves scalability (due to less traffic) 
▪ Storage cost unchanged (still one int for lock) 
▪ Exponential back-off can cause severe unfairness  
- Newer requesters back off for shorter intervals
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Ticket lock
Main problem with test-and-set style locks: upon 
release, all waiting processors attempt to acquire lock 
using test-and-set 

struct lock { 
   int next_ticket; 
   int now_serving; 
}; 

void Lock(lock* l) { 
  int my_ticket = atomic_increment(&l->next_ticket);   // take a “ticket” 
  while (my_ticket != l->now_serving);                 // wait for number  
}                                                      // to be called 

void unlock(lock* l) { 
  l->now_serving++; 
}

No atomic operation needed to acquire the lock (only a read) 
Result: only one invalidation per lock release (O(P) interconnect traffic)
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Array-based lock
Each processor spins on a different memory address 
Utilizes atomic operation to assign address on attempt to acquire
struct lock { 
   padded_int status[P];    // padded to keep off same cache line 
   int head; 
}; 

int my_element; 

void Lock(lock* l) { 
  my_element = atomic_circ_increment(&l->head);    // assume circular increment 
  while (l->status[my_element] == 1); 
} 

void unlock(lock* l) { 
  l->status[my_element] = 1; 
  l->status[circ_next(my_element)] = 0;            // next() gives next index 
}

O(1) interconnect traffic per release, but lock requires space linear in P 
Also, the atomic circular increment is a more complex operation (higher overhead)
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Additional atomic operations
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Atomic operations provided by CUDA
int   atomicAdd(int* address, int val); 

float atomicAdd(float* address, float val); 

int   atomicSub(int* address, int val); 

int   atomicExch(int* address, int val); 

float atomicExch(float* address, float val); 

int   atomicMin(int* address, int val); 

int   atomicMax(int* address, int val); 

unsigned int atomicInc(unsigned int* address, unsigned int val); 

unsigned int atomicDec(unsigned int* address, unsigned int val); 

int   atomicCAS(int* address, int compare, int val); 

int   atomicAnd(int* address, int val);  // bitwise 

int   atomicOr(int* address, int val);   // bitwise 

int   atomicXor(int* address, int val);  // bitwise 

(omitting additional 64 bit and unsigned int versions)
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Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()? 
Example: atomic_min()

// atomicCAS: 
// atomic compare and swap performs the following logic atomically  
int atomicCAS(int* addr, int compare, int val) { 
   int old = *addr; 
   *addr = (old == compare) ? val : old; 
   return old; 
}

int atomic_min(int* addr, int x) { 
   int old = *addr; 
   int new = min(old, x); 
   while (atomicCAS(addr, old, new) != old) { 
     old = *addr; 
     new = min(old, x); 
   } 
}

What about these operations?
int  atomic_increment(int* addr, int x);   // for signed values of x 
void lock(int* addr);
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Load-linked, store conditional (LL/SC)

▪ Pair of corresponding instructions (not a single atomic 
instruction like compare-and-swap) 
- load_linked(x): load value from address 

- store_conditional(x, value): store value to x, if x hasn’t been written to since 
corresponding LL 

▪ Corresponding ARM instructions: LDREX and STREX 

▪ How might LL/SC be implemented on a cache coherent 
processor?
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C++ 11 atomic<T>

atomic<int> i; 
i++; // atomically increment i 

int a = i; 
// do stuff 
i.compare_exchange_strong(a, 10);   // if i has same value as a, set i to 10 
bool b = i.is_lock_free();          // true if implementation of atomicity 
                                    // is lock free

▪ Provides atomic read, write, read-modify-write of entire objects 
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic 

instructions (if T is a basic type) 

▪ Provides memory ordering semantics for operations before and after 
atomic operations 
- By default: sequential consistency 
- See std::memory_order or more detail

▪ Will be useful if implementing the ideas in our future lock-free 
programming lecture



 Stanford CS149, Winter 2019

Implementing Barriers
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Implementing a centralized barrier
(Barrier for P processors, based on shared counter)

Does it work?  Consider:  
do stuff ... 
Barrier(b, P); 
do more stuff ... 
Barrier(b, P);

struct Barrier_t { 
  LOCK lock;  
  int counter;             // initialize to 0 
  int flag;                 
}; 

// parameter p gives number of processors that should hit the barrier 
void Barrier(Barrier_t* b, int p) { 
  lock(b->lock); 
  if (b->counter == 0) {  
    b->flag = 0;           // first thread arriving at barrier clears flag 
  } 
  int num_arrived = ++(b->counter); 
  unlock(b->lock); 

  if (num_arrived == p) {  // last arriver sets flag 
    b->counter = 0; 
    b->flag = 1; 
  } 
  else { 
    while (b->flag == 0);  // wait for flag 
  } 
}
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Correct centralized barrier
struct Barrier_t { 
  LOCK lock; 
  int arrive_counter;   // initialize to 0 (number of threads that have arrived) 
  int leave_counter;    // initialize to P (number of threads that have left barrier) 
  int flag; 
}; 

void Barrier(Barrier_t* b, int p) { 
  lock(b->lock); 
  if (b->arrive_counter == 0) {       // if first to arrive... 
    if (b->leave_counter == P) {      // check to make sure no other threads “still in barrier” 
       b->flag = 0;                   // first arriving thread clears flag 
    } else { 
      unlock(lock); 
      while (b->leave_counter != P);  // wait for all threads to leave before clearing   
      lock(lock); 
      b->flag = 0;                    // first arriving thread clears flag 
    } 
  } 
  int num_arrived = ++(b->arrive_counter); 
  unlock(b->lock); 

  if (num_arrived == p) {     // last arriver sets flag 
    b->arrive_counter = 0; 
    b->leave_counter = 1; 
    b->flag = 1; 
  } 
  else { 
    while (b->flag == 0);     // wait for flag 
    lock(b->lock); 
    b->leave_counter++; 
    unlock(b->lock); 
  }

Main idea: wait for all processes to 
leave first barrier, before clearing 
flag for entry into the second
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Centralized barrier with sense reversal
struct Barrier_t { 
  LOCK lock; 
  int  counter;               // initialize to 0 
  int  flag;                  // initialize to 0 
}; 

int private_sense = 0;        // private per processor. Main idea: processors wait 
                              // for flag to be equal to private_sense 

void Barrier(Barrier_t* b, int p) { 
  private_sense = (private_sense == 0) ? 1 : 0; 
  lock(b->lock); 
  int num_arrived = ++(b->counter); 
  if (b->counter == p) {      // last arriver sets flag 
    unlock(b->lock); 
    b->counter = 0; 
    b->flag = private_sense; 
  } 
  else { 
    unlock(b->lock); 
    while (b.flag != private_sense);  // wait for flag 
  } 

Sense reversal optimization results in one spin instead of two
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Centralized barrier: traffic
▪ O(P) traffic on interconnect per barrier: 

- All threads: 2P write transactions to obtain barrier lock and update counter 
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)  

- Last thread: 2 write transactions to write to the flag and reset the counter 
(O(P) traffic since there are many sharers of the flag)  

- P-1 transactions to read updated flag 

▪ But there is still serialization on a single shared lock 
- So span (latency) of entire operation is O(P) 

- Can we do better?
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Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in more complex interconnect topologies 
- lg(P) span (latency) 

▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter 
- Process recurses to root 

▪ Barrier release: beginning from root, notify children of release 

Centralized Barrier Combining Tree Barrier

High contention! 
(e.g., single barrier 
lock and counter)
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Coming up…
▪ Imagine you have a shared variable for which contention is low. 

So it is unlikely that two processors will enter the critical section 
at the same time?  

▪ You could hope for the best, and avoid the overhead of taking the 
lock since it is likely that mechanisms for ensuring mutual 
exclusion are not needed for correctness 
- Take a “optimize-for-the-common-case” attitude 

▪ What happens if you take this approach and you’re wrong: in the 
middle of the critical region, another process enters the same 
region?
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Preview: transactional memory
atomic 

{   // begin transaction 

   perform atomic computation here ... 

}   // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no 
synchronization was necessary. (it speculates!) 

System provides hardware/software support for “rolling back” all loads and 
stores in the critical region if it detects (at run-time) that another thread has 
entered same region at the same time.


