
Parallel Computing
Stanford CS149, Winter 2019

Lecture 9:

Memory Consistency

Stanford CS149, Winter 2019

Midterm
▪ Feb 12
▪ Open notes
▪ Practice midterm

Stanford CS149, Winter 2019

Shared Memory Behavior

▪ Intuition says loads should return latest value written
- What is latest?
- Coherence: only one memory location
- Consistency: apparent ordering for all locations

- Order in which memory operations performed by one thread become visible
to other threads

▪ Affects
- Programmability: how programmers reason about program behavior

- Allowed behavior of multithreaded programs executing with shared memory

- Performance: limits HW/SW optimizations that can be used
- Reordering memory operations to hide latency

Stanford CS149, Winter 2019

Today: what you should know

▪ Understand the motivation for relaxed consistency models

▪ Understand the implications of relaxing W→R ordering

Stanford CS149, Winter 2019

Today: who should care
▪ Anyone who:

- Wants to implement a synchronization library
- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures *
- Does any of the above on ARM processors **

** For reasons to be described later
* Topic of a later lecture

Stanford CS149, Winter 2019

Memory coherence vs. memory consistency

▪ Memory coherence defines requirements for the observed
behavior of reads and writes to the same memory location
- All processors must agree on the order of reads/writes to X
- In other words: it is possible to put all operations involving X on a timeline such

that the observations of all processors are consistent with that timeline

▪ Memory consistency defines the behavior of reads and writes
to different locations (as observed by other processors)
- Coherence only guarantees that writes to address X will eventually propagate

to other processors
- Consistency deals with when writes to X propagate to other processors, relative

to reads and writes to other addresses

Observed chronology of
operations on address X

P0 write: 5

P1 read (5)

P2 write: 10

P2 write: 11

P1 read (11)

Stanford CS149, Winter 2019

Coherence vs. Consistency
(said again, perhaps more intuitively this time)

▪ The goal of cache coherence is to ensure that the memory system in a
parallel computer behaves as if the caches were not there

- Just like how the memory system in a uni-processor system behaves as if the cache
was not there

▪ A system without caches would have no need for cache coherence

▪ Memory consistency defines the allowed behavior of loads and stores to
different addresses in a parallel system

- The allowed behavior of memory should be specified whether or not caches are
present (and that’s what a memory consistency model does)

Stanford CS149, Winter 2019

Memory Consistency

▪ The trailer:
- Multiprocessors reorder memory operations in unintuitive and strange

ways
- This behavior is required for performance
- Application programmers rarely see this behavior
- Systems (OS and compiler) developers see it all the time

Stanford CS149, Winter 2019

Memory operation ordering
▪ A program defines a sequence of loads and stores

(this is the “program order” of the loads and stores)

▪ Four types of memory operation orderings
- W→R: write to X must commit before subsequent read from Y *
- R→R: read from X must commit before subsequent read from Y
- R→W: read to X must commit before subsequent write to Y
- W→W: write to X must commit before subsequent write to Y

* To clarify: “write must commit before subsequent read” means:
When a write comes before a read in program order, the write must commit (its results are visible)
by the time the read occurs.

Stanford CS149, Winter 2019

Multiprocessor Execution

▪ What can be printed?

- “01”?
- “10”?
- “11”?
- “00”?

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

Stanford CS149, Winter 2019

Orderings That Should Not Happen

▪ The program should not print “00”
▪ A “happens-before” graph shows the order in which events

must execute to get a desired outcome
▪ If there’s a cycle in the graph, an outcome is impossible—an

event must happen before itself!

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

Stanford CS149, Winter 2019

What Should Programmers Expect
▪ Sequential Consistency

- Lamport 1976 (Turing Award 2013)
- All operations executed in some sequential

order
- As if they were manipulating a single shared

memory
- Each thread’s operations happen in program

order

▪ A sequentially consistent memory system
maintains all four memory operation orderings
(W→R, R→R, R→W, W→W)

There is a chronology of all memory
operations that is consistent with

observed values

P0 store: X ←5

P1 store: X ←10

P0 store: Y ←1

P1 load: X

P0 load: X

P1 store: Y ←20

Note, now timeline lists
operations to addresses X
and Y

Stanford CS149, Winter 2019

Sequential consistency (switch metaphor)

Processor
1

Processor
2

Processor
3

Processor
0

Memory

▪ All processors issue loads and stores in program order
▪ Memory chooses a processor, performs a memory

operation to completion, then chooses another
processor, …

Stanford CS149, Winter 2019

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed “switch” running one
instruction at a time

Stanford CS149, Winter 2019

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

“switch” running one
instruction at a time

Stanford CS149, Winter 2019

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

“switch” running one
instruction at a time

Stanford CS149, Winter 2019

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)

“switch” running one
instruction at a time

Stanford CS149, Winter 2019

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)

R1 = B (1)

“switch” running one
instruction at a time

Stanford CS149, Winter 2019

Relaxing memory operation ordering
▪ A sequentially consistent memory system maintains

all four memory operation orderings (W→R, R→R,
R→W, W→W)

▪ Relaxed memory consistency models allow certain
orderings to be violated

Stanford CS149, Winter 2019

Motivation for relaxed consistency: hiding latency
▪ Why are we interested in relaxing ordering requirements?

- To gain performance
- Specifically, hiding memory latency: overlap memory access operations with other operations

when they are independent
- Remember, memory access in a cache coherent system may entail much more work then simply

reading bits from memory (finding data, sending invalidations, etc.)

Write A

Read B

Write A
Read B

vs.

Stanford CS149, Winter 2019

Problem with SC

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

These two instructions don’t
conflict—there’s no need to wait for

the first one to finish!

Writing takes a long time:
100s of cycles

Stanford CS149, Winter 2019

Optimization: Write Buffer

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed

A = 1

Write Buffer
A = 1

Write Buffer

Each processor reads
from and writes to own

write buffer

Stanford CS149, Winter 2019

Write Buffers Change Memory Behavior

Memory

A = 0
B = 0

Processor 0

Write Buffer

Processor 1

Write Buffer

Initially A = B = 0

Proc 0
(1) A = 1
(2) r1 = B

Proc 1
(3) B = 1
(4) r2 = A

Can r1 = r2 = 0?
SC: No
Write buffers:

Stanford CS149, Winter 2019

Write buffer performance

Base: Sequentially consistent execution. Processor issues one memory
operation at a time, stalls until completion
W-R: relaxed W→R ordering constraint (write latency almost fully hidden)

Processor 1

Cache

Write
Buffer

Reads Writes

Reads Writes

Stanford CS149, Winter 2019

Write Buffers: Who Cares?
▪ Performance improvement
▪ Every modern processor uses them

- Intel x86, ARM, SPARC
▪ Need a weaker memory model

- TSO: Total Store Order
- Slightly harder to reason about than SC
- x86 uses an incompletely specified form of TSO

Stanford CS149, Winter 2019

Allowing reads to move ahead of writes
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read
- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write
- W→W: write must complete before subsequent write

▪ Allow processor to hide latency of writes
- Total Store Ordering (TSO)
- Processor Consistency (PC)

Write A

Read B

Write A
Read B

vs.

Stanford CS149, Winter 2019

Allowing reads to move ahead of writes
▪ Total store ordering (TSO)

- Processor P can read B before its write to A is seen by all processors
(processor can move its own reads in front of its own writes)
- Reads by other processors cannot return new value of A until the write to A

is observed by all processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all

processors

▪ In TSO and PC, only W→R order is relaxed. The W→W constraint still exists.
Writes by the same thread are not reordered (they occur in program order)

Stanford CS149, Winter 2019

Clarification (make sure you get this!)
▪ The cache coherency problem exists because hardware implements

the optimization of duplicating data in multiple processor caches. The
copies of the data must be kept coherent.

▪ Relaxed memory consistency issues arise from the optimization of
reordering memory operations. (Consistency is unrelated to whether
or not caches exist in the system.)

Stanford CS149, Winter 2019

Allowing writes to be reordered
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Partial Store Ordering (PSO)
- Execution may not match sequential consistency on program 1

(P2 may observe change to flag before change to A)

A = 1;

flag = 1;

while (flag == 0);

print A;

Thread 1 (on P1) Thread 2 (on P2)

Stanford CS149, Winter 2019

Why might it be useful to allow more
aggressive memory operation reorderings?

▪ W→W: processor might reorder write operations in a write buffer
(e.g., one is a cache miss while the other is a hit)

▪ R→W, R→R: processor might reorder independent instructions in an
instruction stream (out-of-order execution)

▪ Keep in mind these are all valid optimizations if a program consists of
a single instruction stream

Stanford CS149, Winter 2019

Allowing all reorderings
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read
- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write
- W→W: write must complete before subsequent write

▪ No guarantees about operations on data!
- Everything can be reordered

▪ Motivation is increased performance
- Overlap multiple reads and writes in the memory system
- Execute reads as early as possible and writes as late as

possible to hide memory latency
▪ Examples:

- Weak ordering (WO)
- Release Consistency (RC)

Stanford CS149, Winter 2019

Synchronization to the Rescue
▪ Memory reordering seems like a nightmare (it is!)

▪ Every architecture provides synchronization primitives to
make memory ordering stricter

▪ Fence (memory barrier) instructions prevent reorderings,
but are expensive
- All memory operations complete before any memory operation after it can begin

▪ Other synchronization primitives (per address):
- read-modify-write/compare-and-swap, transactional memory, …

reorderable reads
and writes here

...

MEMORY FENCE

...

reorderable reads
and writes here

...

MEMORY FENCE

Stanford CS149, Winter 2019

Example: expressing synchronization in relaxed models

▪ Intel x86/x64 ~ total store ordering
- Provides sync instructions if software requires a specific instruction

ordering not guaranteed by the consistency model
- mm_lfence (“load fence”: wait for all loads to complete)
- mm_sfence (“store fence”: wait for all stores to complete)
- mm_mfence (“mem fence”: wait for all me operations to complete)

▪ ARM processors: very relaxed consistency model

A cool post on the role of memory fences in x86:

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:

http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf

A great list:

http://www.cl.cam.ac.uk/~pes20/weakmemory/

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/

Stanford CS149, Winter 2019

Problem: Data Races
▪ Every example so far has involved a data race

- Two accesses to the same memory location
- At least one is a write
- Unordered by synchronization operations

Stanford CS149, Winter 2019

Conflicting data accesses
▪ Two memory accesses by different processors conflict if…

- They access the same memory location
- At least one is a write

▪ Unsynchronized program
- Conflicting accesses not ordered by synchronization (e.g., a fence, operation with

release/acquire semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the program depends on
relative speed of processors (non-deterministic program results)

Stanford CS149, Winter 2019

Synchronized programs

▪ Synchronized programs yield SC results on non-SC systems
- Synchronized programs are data-race-free

▪ If there are no data races, reordering behavior doesn’t matter
- Accesses are ordered by synchronization, and synchronization

forces sequential consistency

▪ In practice, most programs you encounter will be synchronized (via locks,
barriers, etc. implemented in synchronization libraries)
1. Rather than via ad-hoc reads/writes to shared variables like in the example programs

Stanford CS149, Winter 2019

Summary: relaxed consistency
▪ Motivation: obtain higher performance by allowing recording of

memory operations (reordering is not allowed by sequential
consistency)

▪ One cost is software complexity: programmer or compiler must
correctly insert synchronization to ensure certain specific
operation orderings when needed
- But in practice complexities encapsulated in libraries that provide intuitive

primitives like lock/unlock, barrier (or lower level primitives like fence)

- Optimize for the common case: most memory accesses are not conflicting, so don’t
design a system that pays the cost as if they are

▪ Relaxed consistency models differ in which memory ordering
constraints they ignore

Stanford CS149, Winter 2019

Languages Need Memory Models Too

Stanford CS149, Winter 2019

Languages Need Memory Models Too

Optimization not visible to programmer

Stanford CS149, Winter 2019

Languages Need Memory Models Too

Provide a contract to programmers about how their
memory operations will be reordered by the

compiler e.g. no reordering of shared memory
operations

Optimization is visible to programmer

Stanford CS149, Winter 2019

Language Level Memory Models
▪ Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee

sequential consistency for data-race-free programs (“SC for DRF”)
- Compilers will insert the necessary synchronization to cope with the

hardware memory model

▪ No guarantees if your program contains data races!
- The intuition is that most programmers would consider a racy program

to be buggy

▪ Use a synchronization library!

Stanford CS149, Winter 2019

Memory Consistency Models Summary

▪ Define the allowed reorderings of memory operations by hardware and
compilers

▪ A contract between hardware or compiler and application software

▪ Weak models required for good performance?
- SC can perform well with many more resources

▪ Details of memory model can be hidden in synchronization library
- Requires data race free (DRF) programs

Stanford CS149, Winter 2019

What is OpenMP?
▪ OpenMP is a pragma based API that provides a simple extension to C/C++ and

FORTRAN

▪ It is designed for shared memory programming

▪ OpenMP is a very simple interface to threads based programming

- Compiler directives
- Environment variables
- Run time routines

Stanford CS149, Winter 2019

Data Parallelism with OpenMP

Profs. Olukotun/Zaharia CS 149 Lecture 9 44

For-loop with independent iterations For-loop parallelized using
an OpenMP pragma

gcc source.c -fopenmp

Stanford CS149, Winter 2019

Privatizing Variables
▪ Critical to performance!
▪ OpenMP pragmas:

- Designed to make parallelizing sequential code easier
- Makes copies of �private� variables automatically

- And performs some automatic initialization, too
- Must specify shared/private per-variable in parallel region

- private: Uninitialized private data
- Private variables are undefined on entry and exit of the parallel region

- shared: All-shared data
- threadprivate: �static� private for use across several parallel regions

Stanford CS149, Winter 2019

Firstprivate/Lastprivate Clauses

▪ firstprivate (list)
- All variables in the list are initialized with the value the original object

had before entering the parallel region

▪ lastprivate(list)
- The thread that executes the last iteration or section in sequential

order updates the value of the objects in the list

46

Stanford CS149, Winter 2019

Example Private Variables

Profs. Olukotun/Zaharia CS 149 Lecture 9 47

Stanford CS149, Winter 2019

for directive Example

48

Stanford CS149, Winter 2019

Nested Loop Parallelism
#pragma omp parallel for

for(int y=0; y<25; ++y)

{

#pragma omp parallel for

for(int x=0; x<80; ++x)

tick(x,y);

}

#pragma omp parallel for collapse(2) //OpenMP 3.0 (gcc 4.4)

for(int y=0; y<25; ++y)

for(int x=0; x<80; ++x)

tick(x,y);

Stanford CS149, Winter 2019

Multiple Part Parallel Regions
▪ You can also have a �multi-part� parallel region

- Allows easy alternation of serial & parallel parts
- Doesn�t require re-specifying # of threads, etc.

#pragma omp parallel . . .
{
#pragma omp for
. . . Loop here . . .
#pragma omp single
. . . Serial portion here . . .
#pragma omp sections
. . . Sections here . . .
}

Stanford CS149, Winter 2019

OMP Directives Overheads

51

Parallel for

parallel

for

Stanford CS149, Winter 2019

�if� Clause

Profs. Olukotun/Zaharia CS 149 Lecture 9 52

▪ if (scalar expression)
- Only execute in parallel if

expression evaluates to true
- Otherwise, execute serially

Performance without if clause

Stanford CS149, Winter 2019

Reductions in OpenMP

▪ May add reduction clause to parallel for pragma
▪ Specify reduction operation and reduction variable
▪ OpenMP takes care of storing partial results in private variables and combining

partial results after the loop
▪ The reduction clause has this syntax:

reduction (<op> :<variable>)

▪ Operators
- + Sum
- * Product
- &, |, ^ Bitwise and, or , exclusive or
- &&, || Logical and, or

53

Stanford CS149, Winter 2019

Example: Numerical Integration

▪ We know
mathematically that

▪ We can approximate
the integral as a sum of
rectangles:

Stanford CS149, Winter 2019

Sequential Pi Computation

static long num_steps = 100000;
double step;

void main () {
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Stanford CS149, Winter 2019

Loop Parallelized Pi Computation

▪ Notice that we haven’t changed any lines of code, only added 4 lines
▪ Compare to MPI

#include <omp.h>
static long num_steps = 1000000; double step;
#define NUM_THREADS 8

void main (){
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(i, x) reduction(+:sum)
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

56

