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Today: more parallel program optimization

▪ Last lecture: strategies for assigning work to workers 
(threads, processors, etc.) 
- Goal: achieving good workload balance while also minimizing overhead 

- Discussed tradeoffs between static and dynamic work assignment 

- Tip: keep it simple (implement, analyze, then tune/optimize if required) 

▪ Today: strategies for minimizing communication costs
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Let’s begin by talking about message passing, 
since it makes communication explicit
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Recall the grid-based solver example

N

N

In previous lectures we expressed this parallel program using data 
parallel and SPMD programming abstractions

int N;                          
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   bool done = false; 
   float diff = 0.f; 
   while (!done) { 
     for_all (red cells (i,j)) { 
         float prev = A[i,j]; 
         A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                          A[i+1,j] + A[i,j+1]); 
         reduceAdd(diff, abs(A[i,j] - prev)); 
     } 
     if (diff/(N*N) < TOLERANCE) 
         done = true;     
    } 
}
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Let’s think about expressing a parallel grid 
solver with communication via messages

One possible message passing machine configuration: 
a cluster of two workstations

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Network

Computer 1 Computer 2
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Review: message passing programming model

Thread 1 address space

Variable X

▪ Each thread operates within its own private address spaces 

▪ Threads communicate by sending/receiving messages 
- send: specifies recipient, buffer to be transmitted, and optional message identifier 

(“tag”) 
- receive: sender, specifies buffer to store data, and optional message identifier 

- Sending messages is the only way to exchange data between threads 1 and 2

x

Thread 2 address space

Variable X

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local 
variable X as message to thread 2 
and tag message with the id 
“my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id 
“my_msg_id” from thread 1 and 
store contents in local variable Y
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Message passing model: each thread operates in 
its own address space

In this figure: four threads 

The grid data is partitioned into 
four allocations, each residing in 
one of the four unique thread 
address spaces 

(four per-thread private arrays)

Thread 1 
Address 

Space

Thread 2 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space



Stanford CS149, Winter 2019

Data replication is now required to correctly execute 
the program

Thread 1 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space

“Ghost cells” are grid cells replicated from a remote 
address space.  It’s common to say that information 
in ghost cells is “owned” by other threads.

Send row

Send row

Example: 
After processing of red cells is complete, thread 1 
and thread 3 send one row of data to thread 2 
(thread 2 requires up-to-date red cell information to 
update black cells in the next phase)

float* local_data = allocate(N+2,rows_per_thread+2); 

int tid = get_thread_id(); 
int bytes = sizeof(float) * (N+2); 

// receive ghost row cells (white dots) 
recv(&local_data[0,0], bytes, tid-1); 
recv(&local_data[rows_per_thread+1,0], bytes, tid+1); 

// Thread 2 now has data necessary to perform 
// future computation

Thread 2 
Address 

Space

Thread 2 logic:
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int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid != 0) 
       send(&localA[1,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       send(&localA[rows_per_thread,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 
      
    if (tid != 0) 
       recv(&localA[0,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       recv(&localA[rows_per_thread+1,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 

    for (int i=1; i<rows_per_thread+1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     for (int i=1; i<get_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Message passing solver

Send and receive ghost rows to “neighbor threads”

Perform computation 
 (just like in shared address space version of solver)

All threads send local my_diff to thread 0

Thread 0 computes global diff, evaluates 
termination predicate and sends result back to all 

other threads

Similar structure to shared address space 
solver, but now communication is explicit in 
message sends and receives

Example pseudocode from: Culler, Singh, and Gupta 
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Notes on message passing example
▪ Computation 

- Array indexing is relative to local address space (not global grid coordinates) 

▪ Communication: 
- Performed by sending and receiving messages 
- Bulk transfer: communicate entire rows at a time (not individual elements)  

▪ Synchronization: 
- Performed by sending and receiving messages 
- Think of how to implement mutual exclusion, barriers, flags using messages 

▪ For convenience, message passing libraries often include 
higher-level primitives (implemented via send and receive)
reduce_add(0, &my_diff, sizeof(float));       // add up all my_diffs, return result to thread 0 
if (pid == 0 && my_diff/(N*N) < TOLERANCE) 
   done = true; 
broadcast(0, &done, sizeof(bool), MSG_DONE);  // thread 0 sends done to all threads 
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Synchronous (blocking) send and receive
▪ send(): call returns when sender receives acknowledgement that message 

data resides in address space of receiver 

▪ recv(): call returns when data from received message is copied into address 
space of receiver and acknowledgement sent back to sender

Call SEND(foo)
Copy data from buffer ‘foo’  in sender’s address space into network buffer 

Call RECV(bar)

Receive messageSend message 
Copy data into buffer ‘bar’  in receiver’s address space
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:



Stanford CS149, Winter 2019

As implemented on the prior slide, there is a big 
problem with our message passing solver if it uses 

synchronous send/recv! 

Why? 

How can we fix it? 
(while still using synchronous send/recv)
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int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid % 2 == 0) { 
       sendDown(); recvDown(); 
       sendUp();   recvUp(); 
    } else { 
       recvUp();   sendUp(); 
       recvDown(); sendDown(); 
    } 

    for (int i=1; i<rows_per_thread-1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     if (int i=1; i<gen_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Send and receive ghost rows to “neighbor threads” 
Even-numbered threads send, then receive 

Odd-numbered thread recv, then send

Example pseudocode from: Culler, Singh, and Gupta 

Message passing solver 
(fixed to avoid deadlock)

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

send

send

send

send

send
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Non-blocking asynchronous send/recv
▪ send(): call returns immediately 

- Buffer provided to send() cannot be modified by calling thread since message processing 
occurs concurrently with thread execution 

- Calling thread can perform other work while waiting for message to be sent 

▪ recv(): posts intent to receive in the future, returns immediately 
- Use checksend(), checkrecv() to determine actual status of send/receipt 
- Calling thread can perform other work while waiting for message to be received

Call SEND(foo)

Copy data from ‘foo’ into network buffer 

Call RECV(bar)

Receive messageSend message 
Messaging library copies data into ‘bar’

RECV(bar) returns handle h2SEND returns handle h1

Sender: Receiver:

Call CHECKSEND(h1)   // if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)  
// if received, now safe for thread 
// to access ‘bar’

RED TEXT = executes concurrently with application thread  
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Let’s talk about Bay Area traffic…
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San Francisco fog vs. South Bay sun
When it looks like this in SF It looks like this at Stanford
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CS149SKILLZ

Hey, let’s move back to the South Bay! 
(all the cool tech kids are doing it!)
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Everyone wants to get to back to the South Bay!

Car’s velocity: 100 km/hr
Stanford

San 
Francisco

Distance: ~ 50 km

Latency of moving a person from San Francisco to Stanford: 0.5 hours

Throughput: 2 people per hour

(Latency vs. throughput review)

Assume only one car in a lane of the highway at once. 
When car on highway reaches Stanford, the next car leaves San Francisco.
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Improving throughput
Car’s velocity: 200 km/hr

StanfordSan 
Francisco

Approach 1: drive faster!  
Throughput = 4 people per hour

Car’s velocity: 100 km/hr

Stanford

San 
Francisco

Approach 2: build more lanes! 
Throughput = 8 people per hour (2 cars per hour per lane)
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Using the highway more efficiently
Car’s velocity: 100 km/hr

StanfordSan 
Francisco

Cars spaced out by 1 km

Throughput: 100 people/hr (1 car every 1/100th of hour)

Car’s velocity: 100 km/hr

Stanford
San 

Francisco

Throughput: 400 people/hr (4 cars every 1/100th of hour)
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Pipelining
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Example: doing your laundry

Washer 
45 min

Dryer 
60 min

College Student 
15 min

Operation: do your laundry
1. Wash clothes 
2. Dry clothes 
3. Fold clothes 

Latency of completing 1 load of laundry = 2 hours 
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Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources: 
use two washers, two dryers, and call a friend 

Latency of completing 2 loads of laundry = 2 hours 
Throughput increases by 2x: 1 load/hour 

Number of resources increased by 2x: two washers, two dryers
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Pipelining
Goal: maximize throughput of many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours 
Throughput: 1 load/hour 
Resources: one washer, one dryer 
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Another example: an instruction pipeline

time (clocks)

Latency: 1 instruction takes 4 cycles 
Throughput: 1 instruction per cycle 
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Intel Core i7 pipeline is variable length (it depends on the instruction) ~15-20 stages

Four-stage instruction pipeline: 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute 
WB = “write back” results to registers 

Break execution of each instruction down into several smaller steps   
Enables higher clock frequency (only a simple, short operation is done by each part of pipeline each clock)

instr 0

instr 1

instr 2

instr 3

instr 4

instr 5
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Analogy to driving to Stanford example

Car’s velocity: 100 km/hr
StanfordSan 

Francisco

Cars spaced by 1 km on highway

Throughput = 100 people per hour (1 car every 1/100 of an hour)

Car’s velocity: 100 km/hr
StanfordSan 

Francisco

Cars now spaced by only 500m on highway

Throughput = 200 people per hour (1 car every 1/200 of an hour) *

* Equivalent throughput to maintaining 1 km spacing of cars and driving at 200 km/hr 

Task of driving from San Francisco to Stanford is broken up into smaller subproblems 
that different cars can tackle in parallel 

(top: subproblem = drive 1 km, bottom: subproblem = drive 500m) 
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Review: latency vs throughput

Latency

Bandwidth

The amount of time needed for an operation to complete. 
A memory load that misses the cache has a latency of 200 cycles 

A packet takes 20 ms to be sent from my computer to Google 
Asking a question on Piazza gets response in 10 minutes

The rate at which operations are performed. 
Memory can provide data to the processor at 25 GB/sec. 

A communication link can send 10 million messages per second 
The TAs answer 50 questions per day on Piazza
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A simple model of non-pipelined communication

T(n) = transfer time (overall latency of the operation) 

T0 = start-up latency (e.g., time until first bit arrives at destination) 

n = bytes transferred in operation 

B = transfer rate (bandwidth of the link)

If processor only sends next message once previous message send completes… 

“Effective bandwidth” = n / T(n)  
Effective bandwidth depends on transfer size (big transfers amortize startup latency) 

T0 T0 T0n/B n/B n/B
time 

Example: sending a n-bit message
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A more general model of communication

Send API call, copy message to network buffer 

Send data over link 1 (slow link): T0 + n/Bsmall

Send data over link 2 (fast link): T0 + n/Blarge
Copy message to receiver node’s network buffer:

= Overhead  (time spent on the communication by a processor) 

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Total communication time = overhead + occupancy + network delay
Example: sending a n-bit message

Sender Receiver
Link 1 

bandwidth = Bsmall

Link 2 
bandwidth = Blarge

Example from: Culler, Singh, and Gupta 
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Pipelined communication

Occupancy determines communication rate! 
(in steady state: msg/sec = 1/occupancy)

time 

Assume network buffer can hold at most two messages (numbers indicate number of msgs in buffer after insert)

Sender emits burst of messages 
(faster than 1/occupancy) 

= sender blocked from sending additional 
messages due to network buffer being full

Example from: Culler, Singh, and Gupta 

Messages are buffered while link is busy

= Overhead  (time spent on the communication by a processor) 

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

1

1

2

2

2

Msg 0

Msg 1

Msg 2

Msg 3
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When I talk about communication, I’m not just referring to 
messages between machines in a cluster. 

Examples: 
Communication between cores on a chip 

Communication between a core and its cache 
Communication between a core and memory 
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Review of caches
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Think of a parallel system as an extended memory hierarchy
I want you to think of “communication” very generally: 
- Communication between a processor and its cache 
- Communication between processor and memory (e.g., memory on same machine) 
- Communication between processor and a remote memory 

(e.g., memory on another node in the cluster, accessed by sending a network message)

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth, 
smaller capacity

Higher latency, lower bandwidth, 
larger capacity

View from one processor

Accesses not satisfied in local memory 
cause communication with next level 

So managing locality to reduce the 
amount of communication performed 
is important at all levels.
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Cache review

8

address 0x0
0x4

0x10

0x20

0x40

Consider 4-byte elements 
Consider a cache with 16-byte cache lines 
and a capacity of 32 bytes 
(2 lines fit in cache) 
Least recently used replacement 

0x0 
0x4 
0x8 
0xc 
0x10 
0x14 
0x18 
0x1c 
0x20 
0x24 
0x28 
0x2c 
0x30 
0x34 
0x38 
0x3c 
0x40

0x1c

Address 
accessed

Cache state (after load is complete)

“cold miss” 
hit 
hit 
hit 
cold miss 
hit 
hit 
hit 
cold miss (evict 0x0) 
hit 
hit 
hit 
cold miss (evict 0x10) 
hit 
hit 
hit 
cold miss (evict 0x20)

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

0x10
0x10
0x10
0x10
0x10
0x10
0x10
0x10

0x20
0x20
0x20
0x20
0x20
0x20
0x20
0x20

0x30
0x30
0x30
0x30

0x300x40
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Communication: working set perspective

Increasing capacity of hierarchy level

Data 
traffic

This diagram holds true at any level of the memory hierarchy in a parallel system
Question: how much capacity should an architect build for this workload?

Cold misses

Inherent Communication

Cache capacity-generated traffic 
(including conflicts)

First working set

Second working set
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Two reasons for communication: 
inherent vs. artifactual communication
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Inherent communication
Communication that must occur in a 
parallel algorithm.  The communication 
is fundamental to the algorithm. 

In our messaging passing example at 
the start of class, sending ghost rows 
was inherent communication

P3 

P4

Send row

Send row

P1 

P2
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Communication-to-computation ratio

▪ If denominator is the execution time of computation, ratio gives average 
bandwidth requirement of code 

▪ “Arithmetic intensity” = 1 / communication-to-computation ratio 
- I find arithmetic intensity a more intuitive quantity, since higher is better. 
- It also sounds cooler 

▪ High arithmetic intensity (low communication-to-computation ratio) is required to 
efficiently utilize modern parallel processors since the ratio of compute capability 
to available bandwidth is high (recall element-wise vector multiply from lecture 2)

amount of communication (e.g., bytes)

amount of computation (e.g., instructions) 
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Reducing inherent communication
Good assignment decisions can reduce inherent communication 
(increase arithmetic intensity)

1D blocked assignment: N x N grid 1D interleaved assignment: N x N grid

elements computed (per processor) ≈ N2/P

elements communicated (per processor)  ≈ 2N
 ∝ N / P elements computed

elements communicated
 = 1/2 
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Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements 

P processors 

elements computed: 
(per processor)  

elements communicated: 
(per processor)  

arithmetic intensity: 

2D blocked assignment: N x N grid

Asymptotically better communication scaling than 1D blocked assignment 
Communication costs increase sub-linearly with P 
Assignment captures 2D locality of algorithm

N
P

N 2

P

∝
N
P
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Artifactual communication
▪ Inherent communication: information that fundamentally must be 

moved between processors to carry out the algorithm given the 
specified assignment (assumes unlimited capacity caches, 
minimum granularity transfers, etc.)  

▪ Artifactual communication: all other communication (artifactual 
communication results from practical details of system 
implementation)
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Data access in grid solver: row-major traversal

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Recall grid solver application. 
Blue elements show data that is in cache 
after update to red element.
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N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Blue elements show data in cache at end 
of processing first row.

Data access in grid solver: row-major traversal
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Problem with row-major traversal: long 
time between accesses to same data

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Although elements (0,2) and (0,1) had been 
accessed previously, they are no longer 
present in cache at start of processing row 2.

This program loads three lines for every 
four elements of output.
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Artifactual communication examples
▪ System might have a minimum granularity of data transfer (result: system must 

communicate more data than what is needed) 
- Program loads one 4-byte float value but entire 64-byte cache line must be 

transferred from memory (16x more communication than necessary) 

▪ System operation might result in unnecessary communication: 
- Program stores 16 consecutive 4-byte float values, so entire 64-byte cache line is 

loaded from memory, entirely overwritten, then subsequently stored to 
memory (2x overhead… load was unnecessary) 

▪ Poor placement of data in distributed memories (data doesn’t reside near processor 
that accesses it most often) 

▪ Finite replication capacity (the same data communicated to processor multiple 
times because cache is too small to retain it between accesses)
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Techniques for reducing communication
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Improving temporal locality by changing 
grid traversal order

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order 

(diagram shows state of cache after 
finishing work from first row of first block)

Now load two cache lines for every six 
elements of output
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Improving temporal locality by fusing loops
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numPy in Python) 
Code on bottom performs much better. Why?



Stanford CS149, Winter 2019

Improve arithmetic intensity by sharing data

▪ Exploit sharing: co-locate tasks that operate on the same data 
- Schedule threads working on the same data structure at the same time 

on the same processor 

- Reduces inherent communication
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Exploiting spatial locality
▪ Granularity of communication can be important because it may 

introduce artifactual communication 
- Granularity of communication / data transfer 
- Granularity of cache coherence (will discuss in future lecture)
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Artifactual communication due to comm. granularity
2D blocked assignment of data to processors as described previously. 
Assume: communication granularity is a cache line, and a cache line 
contains four elements

Good spatial locality for non-local 
accesses to top-bottom rows

Poor spatial locality for non-local 
accesses to left-right columns 

Inherently need one element from left 
and right neighbor, but system must 
communicate four. 

Implication: artifactual communication 
increases with cache line size! 

= required elements assigned to other processors

Data owned by one thread
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Artifactual communication due to cache line 
communication granularity

P1 P2

Data partitioned in half by column.  Partitions 
assigned to threads running on P1 and P2 

Threads access their assigned elements 
(no inherent communication exists) 

But data access on real machine triggers 
(artifactual) communication due to the cache 
line being written to by both processors * 

* further detail in the upcoming cache coherence lectures

Cache line
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Reducing artifactual comm: blocked data layout

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

2D, row-major array layout 4D array layout (block-major)

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

Consecutive addresses 
straddle partition boundary

Consecutive addresses remain 
within single partition

Note: don’t confuse blocked assignment of work to threads (true in both 
cases above) with blocked data layout in the address space (only at right)

(Blue lines indicate consecutive memory addresses)
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Grid solver: execution time breakdown

Thread Thread
0 31 0 31

▪ Observations: 
- Static assignment is sufficient (approximately equal busy time per thread) 
- 4D blocking of grid reduces time spent on communication 

(reflected on graph as data wait time) 
- Synchronization cost is largely due to waiting at barriers

4D Blocked layout2D Blocked layout

Execution on 32-processor SGI Origin 2000 (1026 x 1026 grids)

Figure credit: Culler, Singh, and Gupta
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Contention
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Example: office hours from 3-3:20pm 
(no appointments)

▪ Operation to perform: Professor Kayvon helps a student with a question 

▪ Execution resource: Professor Kayvon 

▪ Steps in operation: 
1. Student walks from Bytes Cafe to Kayvon’s office (5 minutes) 
2. Student waits in line (if necessary) 
3. Student gets question answered with insightful answer (5 minutes)
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Example: office hours from 3-3:20pm 
(no appointments)

Student 1

Time

2:55pm 3pm 3:05

Student 2

Student 3

Student 4

Student 5

3:10 3:15 3:20

= Walk to Kayvon’s office (5 minutes) = Wait in line = Get question answered

Time cost to student: 
10 minutes

Time cost to student: 
23 minutes

Problem: contention for shared resource results in longer overall operation 
times (and likely higher cost to students) 
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Example: two students make appointments to talk 
to me about course material (at 3pm and at 4:30pm)

Student 1 
(appt @ 3pm)

Student 2 
(appt @ 4pm)

Time

2:55pm 3pm 3:05pm 4:25pm 4:30pm 4:35pm

Time cost to student: 
10 minutes

Time cost to student: 
10 minutes
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Contention
▪ A resource can perform operations at a given throughput (number of 

transactions per unit time) 
- Memory, communication links, servers, TA’s at office hours, etc. 

▪ Contention occurs when many requests to a resource are made within 
a small window of time  (the resource is a “hot spot”)

Tree structured communication: 
reduces contention 

(but higher latency under no contention)

Flat communication: 
potential for high contention 

(but low latency if no contention)

Example: updating a shared variable
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Example: distributed work queues reduce 
contention (contention in access to single shared work queue)

Worker threads: 
Pull data from OWN work queue 
Push new work to OWN work queue 
(no contention when all processors have 
work to do) 

When local work queue is empty... 
STEAL work from random work queue 
(synchronization okay since processor 
would have sat idle anyway)

T1 T2 T3 T4

Set of work queues 
(In general, one per worker thread)

Steal!

Subproblems 
(a.k.a. “tasks”, “work to do”)
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Summary: reducing communication costs
▪ Reduce overhead of communication to sender/receiver 

- Send fewer messages, make messages larger (amortize overhead) 
- Coalesce many small messages into large ones 

▪ Reduce latency of communication 
- Application writer: restructure code to exploit locality  
- Hardware implementor: improve communication architecture 

▪ Reduce contention 
- Replicate contended resources (e.g., local copies, fine-grained locks)  
- Stagger access to contended resources 

▪ Increase communication/computation overlap 
- Application writer: use asynchronous communication (e.g., async messages)  
- HW implementor: pipelining, multi-threading, pre-fetching, out-of-order exec 
- Requires additional concurrency in application (more concurrency than number 

of execution units)
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Here are some tricks for understanding 
the performance of parallel software
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Remember: 
Always, always, always try the simplest 

parallel solution first, then measure 
performance to see where you stand.
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A useful performance analysis strategy
▪ Determine if your performance is limited by computation, 

memory bandwidth (or memory latency), or synchronization? 

▪ Try and establish “high watermarks” 
- What’s the best you can do in practice? 
- How close is your implementation to a best-case scenario?
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Roofline model
▪ Use microbenchmarks to compute peak performance of a machine as a function of 

arithmetic intensity of application 

▪ Then compare application’s performance to known peak values

Figure credit: Williams et al. 2009

horizontal region: compute limited
diagonal region: memory 
bandwidth limited
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Roofline model: optimization regions
▪ Use various levels of optimization in benchmarks 

(e.g., best performance with and without using SIMD instructions)

Figure credit: Williams et al. 2009
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Establishing high watermarks *
Add “math” (non-memory instructions) 
Does execution time increase linearly with operation count as math is added? 
(If so, this is evidence that code is instruction-rate limited)

Change all array accesses to A[0] 
How much faster does your code get? 
(This establishes an upper bound on benefit of improving locality of data access)

Remove all atomic operations or locks 
How much faster does your code get? (provided it still does approximately the same amount of work) 
(This establishes an upper bound on benefit of reducing sync overhead.)

Remove almost all math, but load same data 
How much does execution-time decrease?  If not much, suspect memory bottleneck

*  Computation, memory access, and synchronization are almost never perfectly overlapped.  As a result, overall performance will  
     rarely be dictated entirely by compute or by bandwidth or by sync.  Even so, the sensitivity of performance change to the above  
     program  modifications can be a good indication of dominant costs
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Use profilers/performance monitoring tools
▪ Image at left is “CPU usage” from activity monitor in OS X while browsing the web 

in Chrome (my laptop has a quad-core Core i7 CPU) 
- Graph plots percentage of time OS has scheduled a process thread onto a 

processor execution context 
- Not very helpful for optimizing performance 

▪ All modern processors have low-level event “performance counters” 
- Registers that count important details such as: instructions completed, clock 

ticks, L2/L3 cache hits/misses, bytes read from memory controller, etc. 

▪ Example: Intel’s Performance Counter Monitor Tool provides a C++ API for 
accessing these registers. 

▪ Also see Intel VTune, PAPI, oprofile, etc.

PCM *m = PCM::getInstance(); 
SystemCounterState begin = getSystemCounterState(); 

// code to analyze goes here 

SystemCounterState end = getSystemCounterState(); 

printf(“Instructions per clock: %f\n”, getIPC(begin, end)); 
printf(“L3 cache hit ratio: %f\n”, getL3CacheHitRatio(begin, end)); 
printf(“Bytes read: %d\n”, getBytesReadFromMC(begin, end));
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Understanding problem size issues
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You are hired by [insert your favorite chip company here]. 

You walk in on day one, and your boss says 
“All of our senior architects have decided to take the year off. 
Your job is to lead the design of our next parallel processor.” 

What questions might you ask?
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Your boss selects the application that matters most to the company 
“I want you to demonstrate good performance on this application.”

▪ Absolute performance? 
- Often measured as wall clock time 
- Another example: operations per second 

▪ Speedup: performance improvement due to parallelism? 
- Execution time of sequential program / execution time on P processors 
- Operations per second on P processors / operations per second of sequential program 

▪ Efficiency? 
- Performance per unit resource 
- e.g., operations per second per chip area, per dollar, per watt

How do you know if you have a good design?
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Measuring scaling
▪ Consider the grid solver example from last week’s class 

- We changed the algorithm to allow for parallelism 
- The new algorithm might converge more slowly, requiring more 

iterations of the solver 

▪ Should speedup be measured against the performance of a 
parallel version of a program running on one processor, or the best 
sequential program?

Common pitfall: compare parallel program speedup to parallel 
algorithm running on one core (easier to make yourself look good)
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Processors

1 16842 32

Speedup of solver application: 258 x 258 grid
Execution on 32 processor SGI Origin 2000

Figure credit: Culler, Singh, and Gupta
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Remember: work assignment in solver

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements 

P processors 

elements computed: 
(per processor)  

elements communicated: 
(per processor)  
  
arithmetic intensity: 

2D blocked assignment: N x N grid

Small N (or large P) yields low arithmetic intensity!

Np
P
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Pitfalls of fixed problem size speedup analysis
Sp

ee
du

p

Processors

Solver execution on 32 processor SGI Origin 2000

Ideal

258 x 258 grid on 32 processors:        ~ 310 grid cells per processor 

1K x 1K grid on 32 processors:             ~ 32K grid cells per processor 

No benefit! (slight slowdown) 

Problem size is just too small for the machine 
(large communication-to-computation ratio) 

Scaling the performance of small problem may 
not be all that important anyway (it might 
already execute fast enough on a single core) 

1 3216842

Figure credit: Culler, Singh, and Gupta
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Pitfalls of fixed problem size speedup analysis
Sp

ee
du

p

Processors
1 32168

Execution on 32 processor SGI Origin 2000

Here: super-linear speedup! with enough 
processors, chunk of grid assigned to each 
processor begins to fit in cache (key working 
set fits in per-processor cache) 

Another example: if problem size is too large 
for a single machine, working set may not fit in 
memory: causing thrashing to disk 

(this would make speedup on a bigger parallel 
machine with more memory look amazing!)

42

Figure credit: Culler, Singh, and Gupta



Stanford CS149, Winter 2019

Understanding scaling: size matters!
▪ There can be complex interactions between the size of the problem to solve 

and the size of the parallel computer 
- Can impact load balance, overhead, arithmetic intensity, locality of data access  
- Effects can be dramatic and application dependent  

▪ Evaluating a machine with a fixed problem size can be problematic 
- Too small a problem: 

- Parallelism overheads dominate parallelism benefits (may even result in slow downs) 
- Problem size may be appropriate for small machines, but inappropriate for large ones 

(does not reflect realistic usage of large machine!) 

- Too large a problem: (problem size chosen to be appropriate for large machine) 
- Key working set may not “fit” in small machine 

(causing thrashing to disk, or key working set exceeds cache capacity, or can’t run at all) 
- When problem working set “fits” in a large machine but not small one, super-linear 

speedups can occur 

▪ Can be desirable to scale problem size as machine sizes grow 
(buy a bigger machine to compute more, rather than just compute the same problem faster)
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Architects also think about scaling

▪ Scaling up: how does architecture’s performance scale with increasing core count? 
- Will design scale to the high end? 

▪ Scaling down: how does architecture’s performance scale with decreasing core count? 
- Will design scale to the low end?  

▪ Parallel architectures are designed to work in a range of contexts 
- Same architecture used for low-end, medium-scale, and high-end systems 
- GPUs are a great example 

- Same SMM core architecture, different numbers of SMM cores per chip

A common question: “Does an architecture scale?”

Titan X: 24 SMM cores 
(250 watts)

GTX 980: 16 SMM cores 
(165 watts)

GTX 950: 6 SMM cores 
(90 watts)

Tegra X1: 2 SMM cores 
(mobile SoC)
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Questions to ask when scaling a problem

▪ Under what constraints should the problem be scaled? 
- “Work done by program” may no longer be the quantity that is fixed  

- Fixed data set size, fixed memory usage per processor, fixed execution time, etc.? 

▪ How should be the problem be scaled? 
- Problem size is often determined by more than one parameter 

- Solver example: problem defined by (N, ε, Δt, T)

grid size: (N x N)

convergence threshold of solver

time step size (of overall fluid simulation that uses solver)

total time simulated by program 
(one hour of fluid flow)
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Problem-constrained scaling *
▪ Focus: use a parallel computer to solve the same problem faster 

▪ Recall pitfalls from earlier in lecture (small problems may not be 
realistic workloads for large machines, big problems may not fit on 
small machines) 

▪ Examples of problem-constrained scaling: 
- Almost everything we’ve considered parallelizing in class so far

Speedup = 
time 1 processor 

time P processors 

* Problem-constrained scaling is often called “hard scaling”.
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Time-constrained scaling
▪ Focus: completing more work in a fixed amount of time 

- Execution time kept fixed as the machine (and problem) scales 

▪ How to measure “work”? 
- Challenge: “work done” may not be linear function of problem inputs 

(e.g. matrix multiplication is O(N3) work for O(N2) sized inputs)    
- One approach: “work done” is defined by execution time of same computation on a 

single processor (but consider effects of thrashing if problem too big) 
- Ideally, a measure of work is: 

- Simple to understand 
- Scales linearly with sequential run time (so ideal speedup remains linear in P)

Speedup = 
work done by P processors 

work done by 1 processor 
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Time-constrained scaling example
Real-time 3D graphics: more compute power allows for rendering of much more complex scene 
Problem size metrics: number of polygons, texels sampled, shader length, etc. 

Assassin's Creed Unity (2014)

Half Life 1 (1998)

Image credits: 
http://www.gamespot.com/forums/system-wars-314159282/assassin-s-creed-unity-best-graphics-of-2014-31696528/ 
http://www.game-weavers.com/?page_id=490

Half-Life (1998)
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Time-constrained scaling example
Large Synoptic Survey Telescope (LSST) 
- Estimated completion in 2019 
- Acquire high-resolution survey of sky (3-gigapixel 

image every 15 seconds, every night for many years)

Image credits: 
http://www.lsst.org 
http://mcdonaldobservatory.org

LSST will be located on top of Cerro Pachón Mountain, Chile

Rapid Image analysis compute platform 
(detect “potentially” 
interesting events)

Notify other observatories if 
potential event detected. Increasing compute capability allows 

for more sophisticated detection 
algorithms (fewer false positives, 
detect broader class of events)

http://www.lsst.org


Stanford CS149, Winter 2019

More time-constrained scaling examples
▪ Computational finance 

- Run most sophisticated model possible in: 1 ms, 1 minute, overnight, etc. 

▪ Modern web sites 
- Want to generate complex page, respond to user in X milliseconds 

(studies show site usage directly corresponds to page load latency) 

▪ Real-time computer vision for robotics 
- Consider self-driving car: want best-quality obstacle detection in 5 ms
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Memory-constrained scaling *
▪ Focus: run the largest problem possible without overflowing main 

memory ** 

▪ Memory per processor is held fixed (e.g., add more machines to cluster) 

▪ Neither work or execution time are held constant 

▪ Note: scaling problem size can make runtimes very large 
- Consider O(N3) matrix multiplication on O(N2) matrices

*    Memory-constrained scaling is often called “weak scaling” 
** Assumptions: (1) memory resources scale with processor count (2) spilling to disk is infeasible behavior (too slow) 

Speedup = 

work per unit time on P processors 
work per unit time on 1 processor 

work (P processors)  x  time (1 processor) 
time (P processors)   x work (1 processor) 

= 
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Memory-constrained scaling examples
▪ One motivation to use supercomputers and 

large clusters is simply to be able to fit large 
problems in memory 

▪ Large N-body problems 
- 2012 Supercomputing Gordon Bell Prize Winner:  

1,073,741,824,000 particle N-body simulation on 
Japan’s K-Computer 

▪ Large-scale machine learning 
- Billions of clicks, documents, etc.

Image credit: Ishiyama et al. 2012

2D domain decomposition of N-body simulation

▪ Memcached (in memory caching system for web apps) 
- More servers = more available cache
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Scaling examples at PIXAR
▪ Rendering a “shot” (a sequence of frames) in a movie 

- Goal: minimize time to completion (problem constrained) 
- Assign each frame to a different machine in the cluster 

▪ Artists working to design lighting for a scene 
- Provide interactive frame rate to artist (time constrained) 
- More performance = higher fidelity representation shown to artist in allotted 

time 

▪ Physical simulation: e.g., fluid simulation 
- Parallelize simulation across multiple machines to fit simulation grid in 

aggregate memory of processors (memory constrained) 

▪ Final render of images for movie 
- Scene complexity is typically bounded by memory available on farm machines 
- One barrier to exploiting additional parallelism within a machine is that 

required footprint often increases with number of processors
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Summary of tips

▪ Measure, measure, measure…  

▪ Establish high watermarks for your program 
- Are you compute, synchronization, or bandwidth bound? 

▪ Be aware of scaling issues. Is the problem well matched for 
the machine?


