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Programming for high performance
▪ Optimizing the performance of parallel programs is an 

iterative process of refining choices for decomposition, 
assignment, and orchestration... 

▪ Key goals (that are at odds with each other) 
- Balance workload onto available execution resources 
- Reduce communication (to avoid stalls) 
- Reduce extra work (overhead) performed to increase parallelism, 

manage assignment, reduce communication, etc. 

▪ We are going to talk about a rich space of techniques
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TIP #1: Always implement the simplest solution first, then 
measure performance to determine if you need to do better. 

(Example: if you anticipate only running low-core count machines, 
it may be unnecessary to implement a complex approach that 

creates and hundreds or thousands of pieces of independent work)
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Balancing the workload
Ideally: all processors are computing all the time during program execution 
(they are computing simultaneously, and they finish their portion of the work at the same time)

Recall Amdahl’s Law: 
Only small amount of load imbalance can 
significantly bound maximum speedup

Time P1 P2 P3 P4

P4 does 20% more work → P4 takes 20% longer to complete              
                                                     → 20% of parallel program’s 
                                                            runtime is serial execution 
(work in serialized section here is about 5% of the work of the entire program: 
S=.05 in Amdahl’s law equation)
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Static assignment
▪ Assignment of work to threads is written into the program 

- Not necessarily determined at compile-time (assignment algorithm may depend on 
runtime parameters such as input data size, number of threads, etc.) 

▪ Recall solver example: assign equal number of grid cells (work) to each thread (worker) 
- We discussed two static assignments of work to workers (blocked and interleaved) 

▪ Good properties of static assignment: simple, essentially zero runtime overhead 
(in this example: extra work to implement assignment is a little bit of indexing math)
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When is static assignment applicable?

▪ When the cost (execution time) of work and the amount of work is predictable 
(so the programmer can work out a good assignment in advance) 

▪ Simplest example: it is known up front that all work has the same cost

Time P1 P2 P3 P4

In the example above: 
There are 12 tasks, and it is known that each have the same cost. 
Assignment solution: statically assign three tasks to each of the four processors.
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When is static assignment applicable?
▪ When work is predictable, but not all jobs have same cost (see example below) 

▪ When statistics about execution time are known (e.g., same cost on average)

Time P1 P2 P3 P4

Jobs have unequal, but known cost: assign to processors to ensure overall good load balance 
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“Semi-static” assignment
▪ Cost of work is predictable for near-term future 

- Idea: recent past is a good predictor of near future 
▪ Application periodically profiles application and re-adjusts assignment 

- Assignment is “static” for the interval between re-adjustments 

Adaptive mesh: 

Mesh is changed as object moves or flow over object changes, 
but changes occur slowly (color indicates assignment of parts 
of mesh to processors)

Particle simulation: 

Redistribute particles as they move 
over course of simulation 
(if motion is slow, redistribution need 
not occur often)

Image credit: http://typhon.sourceforge.net/spip/spip.php?article22
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Dynamic assignment
Program determines assignment dynamically at runtime to ensure a well 
distributed load.  (The execution time of tasks, or the total number of 
tasks, is unpredictable.)

int N = 1024; 
int* x = new int[N]; 
bool* prime = new bool[N]; 

// assume elements of x initialized here 

for (int i=0; i<N; i++) 
{ 
    // unknown execution time 
    is_prime[i] = test_primality(x[i]); 
}

int N = 1024; 
  
// assume allocations are only executed by 1 thread 
int* x = new int[N]; 
bool* is_prime = new bool[N]; 

// assume elements of x are initialized here 

LOCK counter_lock; 
int counter = 0;    // shared variable 

while (1) { 
  int i; 
  lock(counter_lock); 
  i = counter++; 
  unlock(counter_lock); 
  if (i >= N) 
     break; 
  is_prime[i] = test_primality(x[i]); 
}

Sequential program 
(independent loop iterations)

Parallel program 
(SPMD execution by multiple threads, 

shared address space model)

atomic_incr(counter);
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Dynamic assignment using a work queue

Worker threads: 
Pull data from shared work queue 
Push new work to queue as it is created

T1 T2 T3 T4

Sub-problems 
(a.k.a. “tasks”, “work”)

Shared work queue: a list of work to do 
(for now, let’s assume each piece of work is independent)
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What constitutes a piece of work?
What is a potential problem with this implementation?
const int N = 1024; 

// assume allocations are only executed by 1 thread 
float* x = new float[N]; 
bool* prime = new bool[N]; 

// assume elements of x are initialized here 

LOCK counter_lock; 
int counter = 0; 

while (1) { 
  int i; 
  lock(counter_lock); 
  i = counter++; 
  unlock(counter_lock); 
  if (i >= N) 
     break; 
  is_prime[i] = test_primality(x[i]); 
}

Fine granularity partitioning: 1 “task” = 1 element 

Likely good workload balance (many small tasks) 
Potential for high synchronization cost 
(serialization at critical section)

Time in critical section 

This is overhead that 
does not exist in serial 
program 

And.. it’s serial execution 
(recall Amdahl’s Law) 

Time in task 0

So... IS IT a problem?
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Increasing task granularity
const int N = 1024;  
const int GRANULARITY = 10; 

// assume allocations are only executed by 1 thread 
float* x = new float[N]; 
bool* prime = new bool[N]; 

// assume elements of x are initialized here 

LOCK counter_lock; 
int counter = 0; 

while (1) { 
  int i; 
  lock(counter_lock); 
  i = counter; 
  counter += GRANULARITY; 
  unlock(counter_lock); 
  if (i >= N) 
     break; 
  int end = min(i + GRANULARITY, N); 
  for (int j=i; j<end; j++) 
     is_prime[i] = test_primality(x[i]); 
}

Coarse granularity partitioning: 1 “task” = 10 elements 
Decreased synchronization cost 
(Critical section entered 10 times less)

Time in critical section

Time in task 0
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Choosing task size
▪ Useful to have many more tasks* than processors 

(many small tasks enables good workload balance via dynamic assignment) 

- Motivates small granularity tasks 

▪ But want as few tasks as possible to minimize overhead of 
managing the assignment 
- Motivates large granularity tasks 

▪ Ideal granularity depends on many factors 
(Common theme in this course: must know your workload, and your machine)

* I had to pick a term for a piece of work, a sub-problem, etc. 



Stanford CS149, Winter 2019

Smarter task scheduling

16 TasksTime

Consider dynamic scheduling via a shared work queue 

What happens if the system assigns these tasks to workers in left-to-right order?
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Smarter task scheduling
What happens if scheduler runs the long task last?  Potential for load imbalance!

Time P1 P2 P3 P4

One possible solution to imbalance problem: 

Divide work into a larger number of smaller tasks 
- Hopefully “long pole” gets shorter relative to overall execution time  
- May increase synchronization overhead 
- May not be possible (perhaps long task is fundamentally sequential)

Done!
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Smarter task scheduling
Schedule long task first to reduce “slop” at end of computation

P1 P2 P3 P4

Another solution: smarter scheduling 

Schedule long tasks first 
- Thread performing long task performs fewer overall tasks, but approximately the 

same amount of work as the other threads. 
- Requires some knowledge of workload (some predictability of cost)

Time

Done!
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Decreasing synchronization overhead using   
a distributed set of queues
(avoid need for all workers to synchronize on single work queue)

Worker threads: 
Pull data from OWN work queue 
Push new work to OWN work queue 
When local work queue is empty... 
STEAL work from another work queue

T1 T2 T3 T4

Set of work queues 
(In general, one per worker thread)

Steal!

Subproblems 
(a.k.a. “tasks”, “work to do”)
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Work in task queues need not be independent

T1 T2 T3 T4

= application-specified  
     dependency

A task is not removed from queue and assigned to worker 
thread until all task dependencies are satisfied 

Workers can submit new tasks (with optional explicit 
dependencies) to task system

Task management system: 
Scheduler manages dependencies

foo_handle = enqueue_task(foo);              // enqueue task foo (independent of all prior tasks) 
bar_handle = enqueue_task(bar, foo_handle);  // enqueue task bar, cannot run until foo is complete
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Summary
▪ Challenge: achieving good workload balance  

- Want all processors working all the time (otherwise, resources are idle!) 
- But want low-cost solution for achieving this balance 

- Minimize computational overhead (e.g., scheduling/assignment logic) 
- Minimize synchronization costs 

▪ Static assignment vs. dynamic assignment 
- Really, it is not an either/or decision, there’s a continuum of choices 

- Use up-front knowledge about workload as much as possible to reduce load 
imbalance and task management/synchronization costs (in the limit, if the system 
knows everything, use fully static assignment) 

▪ Issues discussed today span aspects of task decomposition, 
assignment, and orchestration
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Scheduling fork-join parallelism
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Common parallel programming patterns
Data parallelism: 
Perform same sequence of operations on many data elements

// openMP parallel for 
#pragma omp parallel for 
for (int i=0; i<N; i++) { 
   B[i] = foo(A[i]); 
} 

// ISPC foreach 
foreach (i=0 ... N) { 
   B[i] = foo(A[i]); 
}

// ISPC bulk task launch 
launch[numTasks] myFooTask(A, B); 

// using higher-order function ‘map’ 
map(foo, A, B);

foo()

// bulk CUDA thread launch (GPU programming) 
foo<<<numBlocks, threadsPerBlock>>>(A, B);
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Common parallel programming patterns
Explicit management of parallelism with threads:

Create one thread per execution unit (or per amount of desired concurrency) 
- Example below: C code with C++ threads

float* A; 
float* B; 

// initialize A and B 

std::thread thread[MAX_THREADS]; 

for (int i=0; i<num_cores; i++) { 
  thread[i] = std::thread(myFunction, A, B); 
} 

for (int i=0; i<num_cores; i++) { 
  thread[i].join(); 
}
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Consider divide-and-conquer algorithms

// sort elements from ‘begin’ up to (but not including) ‘end’ 
void quick_sort(int* begin, int* end) { 

  if (begin >= end-1)  
    return; 

  else { 

     // choose partition key and partition elements 
     // by key, return position of key as `middle` 
     int* middle = partition(begin, end);  

     quick_sort(begin, middle); 

     quick_sort(middle+1, last); 

  } 

}

Quick sort:

independent work!

quick_sort

quick_sort quick_sort

qs qs qs qs

Dependencies
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Fork-join pattern
▪ Natural way to express independent work inherent in divide-and-conquer 

algorithms 

▪ This lecture’s code examples will be in Cilk Plus 
- C++ language extension 
- Originally developed at MIT, now adapted as open standard (in GCC, Intel ICC)

cilk_spawn foo(args); 

Semantics: invoke foo, but unlike standard function call, caller may continue 
executing asynchronously with execution of foo. 

cilk_sync; 

Semantics: returns when all calls spawned by current function have completed. 
(“sync up” with the spawned calls) 

Note: there is an implicit cilk_sync at the end of every function that contains a 
cilk_spawn (implication: when a Cilk function returns, all work associated with 
that function is complete)

“fork” (create new logical thread of control)

“join”
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Call-return of a C function
void my_func() { 

  // calling function (part A) 

  foo(); 
  bar(); 

  // calling function (part B) 

}

foo()

bar()

part B

part A

Semantics of a function call: 
Control moves to the function that is called 
(Thread executes instructions for the function) 

When function returns, control returns back to caller 
(thread resumes executing instructions from the caller)  

my_func()
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Basic Cilk Plus examples
// foo() and bar() may run in parallel 
cilk_spawn foo(); 
bar(); 
cilk_sync;

// foo() and bar() may run in parallel 
cilk_spawn foo(); 
cilk_spawn bar(); 
cilk_sync;

// foo, bar, fizz, buzz, may run in parallel 
cilk_spawn foo(); 
cilk_spawn bar(); 
cilk_spawn fizz(); 
buzz(); 
cilk_sync;

bar() foo()

bar() foo()

fizz() bar()buzz() foo()

Same amount of independent work first example, but potentially 
higher runtime overhead (due to two spawns vs. one)
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Abstraction vs. implementation
▪ Notice that the cilk_spawn abstraction does not specify how 

or when spawned calls are scheduled to execute 
- Only that they may be run concurrently with caller (and with all other 

calls spawned by the caller) 

▪ But cilk_sync does serve as a constraint on scheduling 
- All spawned calls must complete before cilk_sync returns
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Parallel quicksort in Cilk Plus

void quick_sort(int* begin, int* end) { 

  if (begin >= end - PARALLEL_CUTOFF) 
    std::sort(begin, end); 

  else { 

     int* middle = partition(begin, end);  

     cilk_spawn quick_sort(begin, middle); 

     quick_sort(middle+1, last); 

  } 

}

quick_sort()
part()

part()

std:: 
sort()

part()

std:: 
sort()

std:: 
sort()

std:: 
sort()

quick_sort()

part()

std:: 
sort()

std:: 
sort()

std:: 
sort()

part()

part()

std:: 
sort()

Sort sequentially if problem size is sufficiently 
small (overhead of spawn trumps benefits of 
potential parallelization)

part()



Stanford CS149, Winter 2019

Writing fork-join programs
▪ Main idea: expose independent work (potential parallelism) 

to the system using cilk_spawn 

▪ Recall parallel programming rules of thumb 
- Want at least as much work as parallel execution capability (e.g., program 

should probably spawn at least as much work as there are cores) 

- Want more independent work than execution capability to allow for good 
workload balance of all the work onto the cores 

- “parallel slack” = ratio of independent work to machine’s parallel execution 
capability (in practice: ~8 is a good ratio) 

- But not too much independent work so that granularity of work is too small 
(too much slack incurs overhead of managing fine-grained work)
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Scheduling fork-join programs
▪ Consider very simple scheduler: 

- Launch pthread for each cilk_spawn using pthread_create 

- Translate cilk_sync into appropriate pthread_join calls 

▪ Potential performance problems?
- Heavyweight spawn operation 

- Many more concurrently running threads than cores 

- Context switching overhead 

- Larger working set than necessary, less cache locality
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Pool of worker threads
▪ The Cilk Plus runtime maintains pool of worker threads 

- Think: all threads created at application launch * 
- Exactly as many worker threads as execution contexts in the machine

* It’s perfectly fine to think about it this way, but in reality, runtimes tend to be lazy and initialize worker threads on the 
first Cilk spawn. (This is a common implementation strategy, ISPC does the same with worker threads that run ISPC tasks.)

Thread 0 Thread 1 Thread 2 Thread 3

Thread 4 Thread 5 Thread 6 Thread 7

Example: Eight thread worker pool for my 
quad-core laptop with Hyper-Threading

while (work_exists()) { 
   work = get_new_work(); 
   work.run(); 
}
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Consider execution of the following code 

cilk_spawn foo(); 

bar(); 

cilk_sync; foo()

Specifically, consider execution from the point foo() is spawned

spawned child

continuation (rest of calling function)

bar()

What threads should foo() and bar() be executed by?

Thread 0 Thread 1
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First, consider a serial implementation

Thread 0

Executing foo()…

Traditional thread call stack 
(indicates bar will be performed 
next after return)

Thread 1

What if, while executing foo(), 
thread 1 goes idle…

Inefficient: thread 1 could be 
performing bar() at this time!

Run child first… via a regular function call 
-  Thread runs foo(), then returns from foo(), then runs bar() 
- Continuation is implicit in the thread’s stack 
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Per-thread work queues store “work to do”

Thread 0

Thread 
call stack Thread 1

Thread 0 work queue Thread 1 work queue

Empty!bar()

Executing foo()…

Upon reaching cilk_spawn foo(), thread places continuation in 
its work queue, and begins executing foo().
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Idle threads “steal” work from busy threads

Thread 0

Thread 
call stack Thread 1

Thread 0 work queue Thread 1 work queue

bar()

Executing foo()…

1. Idle thread looks in busy 
thread’s queue for work

If thread 1 goes idle (a.k.a. there is no work in its own queue), then 
it looks in thread 0’s queue for work to do.
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Idle threads “steal” work from busy threads

Thread 0

Thread 
call stack Thread 1

Thread 0 work queue Thread 1 work queue

bar()

Executing foo()…

1. Idle thread looks in busy 
threads queue for work

2. Idle thread moves work from busy 
thread’s queue to its own queue

If thread 1 goes idle (a.k.a. there is no work in its own queue), then 
it looks in thread 0’s queue for work to do.
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Idle threads “steal” work from busy threads

Thread 0

Thread 
call stack Thread 1

Thread 0 work queue Thread 1 work queue

Executing foo()…

1. Idle thread looks in busy 
threads queue for work

2. Idle thread moves work from busy 
thread’s queue to its own queue

Executing bar()…
3. Thread resumes execution

If thread 1 goes idle (a.k.a. there is no work in its own queue), then 
it looks in thread 0’s queue for work to do.
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At spawn, should thread run child or continuation?

cilk_spawn foo(); 

bar(); 

cilk_sync; foo()

spawned child

continuation (rest of calling function)

bar()

Run child first: record continuation for later execution 
-  Continuation is made available for stealing by other threads (“continuation stealing”)

Run continuation first: record child for later execution 
- Child is made available for stealing by other threads (“child stealing”)

Which implementation do we choose?
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Consider thread executing the following code 

for (int i=0; i<N; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

▪ Run continuation first (“child stealing”) 
- Caller thread spawns work for all iterations before 

executing any of it 

- Think: breadth-first traversal of call graph. O(N) space 
for spawned work (maximum space) 

- If no stealing, execution order is very different than 
that of program with cilk_spawn removed 

Thread 0

Thread 0 work queue

foo(N-1)
foo(N-2)

foo(0)
…
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for (int i=0; i<N; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

▪ Run child first (“continuation stealing”) 
- Caller thread only creates one item to steal 

(continuation that represents all remaining iterations) 
- If no stealing occurs, thread continually pops 

continuation from work queue, enqueues new 
continuation (with updated value of i) 

- Order of execution is the same as for program with 
spawn removed. 

- Think: depth-first traversal of call graph

Thread 0

Thread 0 work queue

cont: i=1

Executing foo(0)…

Consider thread executing the following code 
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for (int i=0; i<N; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

▪ Run child first (“continuation stealing”) 
- Enqueues continuation with i advanced by 1  

- If continuation is stolen, stealing thread spawns 
and executes next iteration 

- Can prove that work queue storage for system 
with T threads is no more than T times that of 
stack storage for single threaded execution Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

cont: i=1

Executing foo(0)… Executing foo(1)…

Consider thread executing the following code 
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Scheduling quicksort: assume 200 elements

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

void quick_sort(int* begin, int* end) { 
  if (begin >= end - PARALLEL_CUTOFF) 
    std::sort(begin, end); 
  else { 
     int* middle = partition(begin, end);  
     cilk_spawn quick_sort(begin, middle); 
     quick_sort(middle+1, last); 
  } 
}

cont: 101-200

Working on 0-25… 

cont: 51-100
cont: 26-50

…

What work in the queue should 
other threads steal? 
(e.g., steal from top or bottom)



Stanford CS149, Winter 2019

Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

cont: 101-200

Working on 0-25… 

cont: 51-100cont: 26-50
…Steal!

Steal!

Work queue implemented as a dequeue (double ended queue) 
- Local thread pushes/pops from the “tail” (bottom) 
- Remote threads steal from “head” (top)
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Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-25… 

cont: 151-200cont: 26-50
…

cont: 76-100

Working on 51-75… Working on 101-150… 

Work queue implemented as a dequeue (double ended queue) 
- Local thread pushes/pops from the “tail” (bottom) 
- Remote threads steal from “head” (top)
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Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-12… 

cont: 114-125cont: 13-25
…

Working on 51-63… Working on 101-113… 

cont: 64-75
cont: 76-100cont: 26-50 cont: 126-150

cont: 151-200

Work queue implemented as a dequeue (double ended queue) 
- Local thread pushes/pops from the “tail” (bottom) 
- Remote threads steal from “head” (top)
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Implementing work stealing: choice of victim

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-12… 

cont: 114-125cont: 13-25
…

▪ Idle threads randomly choose a thread to attempt to steal from 
▪ Steal work from top of dequeue: 

- Steals largest amount of work (reduce number of steals) 
- Maximum locality in work each thread performs (when combined with run child first scheme) 
- Stealing thread and local thread do not contend for same elements of dequeue (efficient 

lock-free implementations of dequeue exist)

Working on 51-63… Working on 101-113… 

cont: 64-75
cont: 76-100cont: 26-50 cont: 126-150

cont: 151-200
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Child-first work stealing scheduler anticipates 
divide-and-conquer parallelism 

void recursive_for(int start, int end) { 

  while (start <= end - GRANULARITY) { 
    int mid = (end - start) / 2; 
    cilk_spawn recursive_for(start, mid); 
    start = mid; 
  } 

  for (int i=start; i<end; i++) 
     foo(i); 
} 

recursive_for(0, N);  

for (int i=0; i<N; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

(0, N/2)(N/2, 3N/4)

(0, N/4)(N/2, 7N/8)
(N/4, 3N/8)

Code at right generates work in parallel, 
(code at left does not), so it more quickly 
fills parallel machine



Stanford CS149, Winter 2019

Implementing sync
for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on foo(9)… 

cont: i=10

Working on foo(7)… Working on foo(8)… 

Thread 3

Thread 3 work queue

Working on foo(6)… 

State of worker threads 
when all work from loop 

is nearly complete 
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Implementing sync: no stealing case
for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(9), id=A… 

cont: i=10 (id=A)

block (id: A)

Sync for all calls spawned within block A

If no work has been stolen by other threads, then 
there’s nothing to do at the sync point. 

cilk_sync is a no-op.  
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Example 1: “stalling” join policy 
Thread that initiates the fork must perform the sync. 

Therefore it waits for all spawned work to be complete. 
In this case, thread 0 is the thread initiating the fork

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A… 

cont: i=0 (id=A)

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A… 

STOLEN (id=A) cont: i=0, id=A
Steal!

Idle thread 1 steals from busy thread 0 
Note: descriptor for block A created 

The descriptor tracks the number of outstanding 
spawns for the block, and the number of those 
spawns that have completed. 

The 1 spawn tracked by the descriptor corresponds to 
foo(0) being run by thread 0. (Since the continuation 
is now owned by thread 1 after the steal.)

id=A 
spawn: 1, done: 0

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A… 

cont: i=1, id=A

Update count

Working on foo(1), id=A… 

id=A 
spawn: 2, done: 0 STOLEN (id=A)

Thread 1 is now running foo(1) 

Note: spawn count is now 2

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle! Working on foo(1), id=A… 

Thread 2

Thread 2 work queue

cont: i=2, id=A

Working on foo(2), id=A… 

Steal!
STOLEN (id=A)id=A 

spawn: 3, done: 1

Thread 0 completes foo(0) 
(updates spawn descriptor) 

Thread 2 now running foo(2)
STOLEN (id=A)

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle! Idle!

Thread 2

Thread 2 work queue

cont: i=10, id=A

Working on foo(9), id=A… 

id=A 
spawn: 10, done: 9 STOLEN (id=A)

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A

Computation nearing end… 

Only foo(9) remains to be 
completed.
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle! Idle!

Thread 2

Thread 2 work queue

cont: i=10, id=A

Idle!

Notify 
done!id=A 

spawn: 10, done: 10 STOLEN (id=A)

Last spawn completes.

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: stalling join

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on bar()… Idle!

Thread 2

Thread 2 work queue

Idle!

Thread 0 now resumes continuation 
and executes bar() 
Note block A descriptor is now free.

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A… 

STOLEN (id=A) cont: i=0, id=A
Steal!

Example 2: “greedy” policy 
- When thread that initiates the fork goes idle, it 

looks to steal new work 
- Last thread to reach the join point continues 

execution after sync 

id=A 
spawn: 0, done: 0

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A… 

STOLEN (id=A) cont: i=1, id=A

Idle thread 1 steals from busy thread 0 
(as in the previous case)

id=A 
spawn: 2, done: 0

Working on foo(1), id=A… 

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Done with foo(0)! 

STOLEN (id=A) cont: i=1, id=A

Thread 0 completes foo(0) 
No work to do in local dequeue, so thread 0 
looks to steal!id=A 

spawn: 2, done: 0

Working on foo(1), id=A… 

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

STOLEN (id=A)cont: i=2, id=A

Thread 0 now working on foo(2)

id=A 
spawn: 3, done: 1

Working on foo(1), id=A… Working on foo(2), id=A… 

Steal!

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

cont: i=10, id=A

Assume thread 1 is the last to finish 
spawned calls for block A.

id=A 
spawn: 10, done: 9

Working on foo(9), id=A… Idle 

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Implementing sync: greedy policy

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 1 continues on to run bar() 
Note block A descriptor is now free.

Working on bar() Idle 

for (int i=0; i<10; i++) { 

  cilk_spawn foo(i); 

} 

cilk_sync; 

bar();

block (id: A)

Sync for all calls spawned within block A
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Cilk uses greedy join scheduling
▪ Greedy join scheduling policy 

- All threads always attempt to steal if there is nothing to do (threads only go 
idle if there is no work to steal in the system) 

- Worker thread that initiated spawn may not be thread that executes logic after 
cilk_sync 

▪ Remember: 
- Overhead of bookkeeping steals and managing sync points only occurs when 

steals occur 

- If large pieces of work are stolen, this should occur infrequently 

- Most of the time, threads are pushing/popping local work from their local 
dequeue
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Cilk summary
▪ Fork-join parallelism: a natural way to express divide-and-

conquer algorithms 
- Discussed Cilk Plus, but many other systems also have fork/join primitives 
- e.g., OpenMP 

▪ Cilk Plus runtime implements spawn/sync abstraction with a 
locality-aware work stealing scheduler 
- Always run spawned child (continuation stealing) 

- Greedy behavior at join (threads do not wait at join, immediately look for other 
work to steal)


