
Parallel Computing 
Stanford CS149, Winter 2019

Lecture 4:

Parallel Programming Basics



Stanford CS149, Winter 2019

Quiz
export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

This is an ISPC function. 

It contains a loop nest. 

Which iterations of the loop(s) are parallelized 
by ISPC? Which are not? 

Answer: none 
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Parallel program instances were created 
when the sinx() ispc function was called 

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

Call to sinx() 
Begin executing programCount 
instances of sinx()   (ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

sinx() returns. 
Completion of ISPC program instances. 
Resume sequential execution

1  2  3  4  5  6  7  8  

Each instance will run the code in the ispc function serially. 
(parallelism exists because there are multiple program instances, 
not the code that defines an ispc function)
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Creating a parallel program
▪ Thought process: 

1. Identify work that can be performed in parallel 
2. Partition work (and also data associated with the work) 
3. Manage data access, communication, and synchronization 

▪ Recall one of our main goals is speedup *
For a fixed computation: 

Speedup( P processors )     = 
Time (1 processor)

Time (P processors)

* Other goals include high efficiency (cost, area, power, etc.)  
    or working on bigger problems than can fit on one machine



Stanford CS149, Winter 2019

Creating a parallel program
Problem to solve

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

Decomposition

Assignment

Orchestration

Mapping

These responsibilities may be assumed by 
the programmer, by the system (compiler, 

runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta 
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Problem decomposition
▪ Break up problem into tasks that can be carried out in parallel 

▪ In general: create at least enough tasks to keep all execution 
units on a machine busy

Key challenge of decomposition: 
identifying dependencies 

(or... a lack of dependencies)



Stanford CS149, Winter 2019

Amdahl’s Law: dependencies limit 
maximum speedup due to parallelism 

▪ You run your favorite sequential program... 

▪ Let S = the fraction of sequential execution that is inherently 
sequential (dependencies prevent parallel execution) 

▪ Then maximum speedup due to parallel execution  ≤ 1/S
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A simple example
▪ Consider a two-step computation on a N x N image 

- Step 1: double brightness of all pixels 
(independent computation on each pixel) 

- Step 2: compute average of all pixel values 

▪ Sequential implementation of program 
- Both steps take ~ N2 time, so total time is ~ 2N2

N

N

Execution time
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N2 N2

1
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▪ Overall performance: 

Speedup 

Speedup ≤ 2   

First attempt at parallelism (P processors)
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: execute serially 
- time for phase 2: N2

Execution time
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Execution time
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Sequential program

Parallel program
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Parallelizing step 2
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: compute partial sums in parallel, combine results serially 
- time for phase 2: N2/P + P 

▪ Overall performance: 

- Speedup  

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note: speedup → P when N >> P

overhead: 
combining the partial sums

Parallel program

P
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Amdahl’s law
▪ Let S = the fraction of total work that is inherently sequential 

▪ Max speedup on P processors given by:  

speedup 

Num Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1
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Decomposition
▪ Who is responsible for performing decomposition? 

- In most cases: the programmer 

▪ Automatic decomposition of sequential programs continues 
to be a challenging research problem 
(very difficult in general case) 
- Compiler must analyze program, identify dependencies 

- What if dependencies are data dependent (not known at compile time)? 

- Researchers have had modest success with simple loop nests 

- The “magic parallelizing compiler” for complex, general-purpose code has not 
yet been achieved



Stanford CS149, Winter 2019

Assignment
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

** I had to pick a term
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Assignment
▪ Assigning tasks to threads **  

- Think of “tasks” as things to do 
- Think of threads as “workers” 

▪ Goals: balance workload, reduce communication costs 

▪ Can be performed statically, or dynamically during execution 

▪ Although programmer is often responsible for decomposition, 
many languages/runtimes take responsibility for assignment.

** I had to pick a term 
(will explain in a second)
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Assignment examples in ISPC
export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

Programmer-managed assignment: 
Static assignment 
Assign iterations to ISPC program instances in 
interleaved fashion

export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

foreach construct exposes independent work to system 
System-manages assignment of iterations (work) to ISPC 
program instances (abstraction leaves room for dynamic 
assignment, but current ISPC implementation is static)
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Example 2: static assignment using C++11 
threads
void my_thread_start(int N, int terms, float* x, float* results) { 
  sinx(N, terms, x, result); // do work 
} 

void parallel_sinx(int N, int terms, float* x, float* result) { 

    int half = N/2. 
  
    // launch thread to do work on first half of array 
    std::thread t1(my_thread_start, half, terms, x, result); 

    // do work on second half of array in main thread 
    sinx(N - half, terms, x + half, result + half); 

    t1.join(); 
}

Decomposition of work by loop iteration 

Programmer-managed static assignment 
This program assigns iterations to threads in 
a blocked fashion 
(first half of array assigned to the spawned 
thread, second half assigned to main thread)
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Dynamic assignment using ISPC tasks
void foo(uniform float* input, 
         uniform float* output, 
         uniform int N) 
{ 
  // create a bunch of tasks 
  launch[100] my_ispc_task(input, output, N); 
}

Worker 
thread 0

Worker 
thread 1

Worker 
thread 2

Worker 
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Implementation of task assignment to threads: after completing current task, 
worker thread inspects list and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime assign tasks to 
worker threads
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Orchestration
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

** I had to pick a term
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Orchestration
▪ Involves: 

- Structuring communication 

- Adding synchronization to preserve dependencies if necessary 

- Organizing data structures in memory 

- Scheduling tasks 

▪ Goals: reduce costs of communication/sync, preserve locality 
of data reference, reduce overhead, etc. 

▪ Machine details impact many of these decisions 
- If synchronization is expensive, might use it more sparsely
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Mapping to hardware
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

** I had to pick a term



Stanford CS149, Winter 2019

Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware execution units 

▪ Example 1: mapping by the operating system 
- e.g., map pthread to HW execution context on a CPU core 

▪ Example  2: mapping by the compiler 
- Map ISPC program instances to vector instruction lanes 

▪ Example 3: mapping by the hardware 
- Map CUDA thread blocks to GPU cores (future lecture) 

▪ Some interesting mapping decisions: 
- Place related threads (cooperating threads) on the same processor 

(maximize locality, data sharing, minimize costs of comm/sync) 

- Place unrelated threads on the same processor (one might be bandwidth limited and 
another might be compute limited) to use machine more efficiently
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Example: last class I asked you a question 
about mapping
▪ Consider an application that creates two threads 

▪ The application runs on the processor shown below 
- Two cores, two-execution contexts per core, up to instructions per clock, one instruction 

is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s pthreads 
to the processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were implementing the OS, how would to map the two 
threads to the four execution contexts? 

▪ Another question: How would you map 
threads to execution contexts if your C 
program spawned five threads?
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A parallel programming example
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A 2D-grid based solver
▪ Solve partial differential equation (PDE) on (N+2) x (N+2) grid 

▪ Iterative solution 
- Perform Gauss-Seidel sweeps over grid until convergence

N

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] 

                       + A[i,j+1] + A[i+1,j]); 

Grid solver example from: Culler, Singh, and Gupta 
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Grid solver algorithm
C-like pseudocode for sequential algorithm is provided below

const int n; 
float* A;                    // assume allocated to grid of N+2 x N+2 elements 

void solve(float* A) { 

  float diff, prev; 
  bool done = false; 

  while (!done) {                       // outermost loop: iterations 
    diff = 0.f;                       
    for (int i=1; i<n i++) {            // iterate over non-border points of grid 
      for (int j=1; j<n; j++) { 
        prev = A[i,j]; 
        A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] + 
                                  A[i,j+1] + A[i+1,j]); 
        diff += fabs(A[i,j] - prev);    // compute amount of change 
      } 
    } 
    
    if (diff/(n*n) < TOLERANCE)         // quit if converged 
      done = true; 
  } 
} 
 

Grid solver example from: Culler, Singh, and Gupta 
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

Each row element depends on element to left. 

Each row depends on previous row.

Note: the dependencies illustrated on this 
slide are element data dependencies in one 
iteration of the solver (in one iteration of the 
“while not done” loop)
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

There is independent work along the diagonals! 

Good: parallelism exists! 

Possible implementation strategy: 
1. Partition grid cells on a diagonal into tasks 
2. Update values in parallel 
3. When complete, move to next diagonal 

Bad: independent work is hard to exploit 
Not much parallelism at beginning and end of 
computation. 
Frequent synchronization (after completing 
each diagonal)
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Let’s make life easier on ourselves

▪ Idea: improve performance by changing the algorithm to one 
that is more amenable to parallelism 

- Change the order grid cell cells are updated 

- New algorithm iterates to same solution (approximately), 
but converges to solution differently 
- Note: floating-point values computed are different, but solution still 

converges to within error threshold 

- Yes, we needed domain knowledge of Gauss-Seidel method 
for solving a linear system to realize this change is 
permissible for the application
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New approach: reorder grid cell update via 
red-black coloring

N

N

Update all red cells in parallel 

When done updating red cells , 
update all black cells in parallel 
(respect dependency on red cells) 

Repeat until convergence
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Possible assignments of work to processors

Question: Which is better? Does it matter? 

Answer: it depends on the system this program is running on
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Consider dependencies (data flow)
1. Perform red update in parallel 

2. Wait until all processors done with update 

3. Communicate updated red cells to other processors 

4. Perform black update in parallel 

5. Wait until all processors done with update 

6. Communicate updated black cells to other processors 

7. Repeat

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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Communication resulting from assignment

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors 
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Three ways to think about writing this 
program 

▪ Data parallel 

▪ SPMD / shared address space 

▪ Message passing (will wait until a future class)
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Data-parallel expression of solver
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const int n;                          

float* A = allocate(n+2, n+2));   // allocate grid 

void solve(float* A) { 

   bool done = false; 
   float diff = 0.f; 
   while (!done) { 
     for_all (red cells (i,j)) { 
         float prev = A[i,j]; 
         A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                          A[i+1,j] + A[i,j+1]); 
         reduceAdd(diff, abs(A[i,j] - prev)); 
     } 
    
     if (diff/(n*n) < TOLERANCE) 
         done = true;     
    } 
} 

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

decomposition: 
individual grid 
elements constitute 
independent work

Assignment: ???

Orchestration: 
handled by system 
(End of for_all block is implicit wait for all 
workers before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta 

Orchestration: handled by system 
(builtin communication primitive: reduceAdd)
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Shared address space (with SPMD threads) 
expression of solver
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Shared address space expression of solver
SPMD execution model

▪ Programmer is responsible for synchronization 

▪ Common synchronization primitives: 

- Locks (provide mutual exclusion): only one 
thread in the critical region at a time 

- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;                  // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
    
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                            A[i+1,j], A[i,j+1]); 
           lock(myLock) 
           diff += abs(A[i,j] - prev)); 
           unlock(myLock); 
        } 
     } 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver (pseudocode in SPMD execution model)

Value of threadId is different for 
each SPMD instance: use value to 
compute region of grid to work on

Each thread computes the rows it is 
responsible for updating

Grid solver example from: Culler, Singh, and Gupta 

Assume these are global variables 
(accessible to all threads)

Assume solve function is executed by 
all threads. (SPMD-style)
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int     n;                   // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                            A[i+1,j], A[i,j+1]); 
           lock(myLock) 
           diff += abs(A[i,j] - prev)); 
           unlock(myLock); 
        } 
     } 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Do you see a potential performance 
problem with this implementation?

Grid solver example from: Culler, Singh, and Gupta 

(pseudocode in SPMD 
execution model)
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int     n;                  // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                            A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver (SPMD execution model)

compute per worker partial sum

Now only only lock once per thread, not once 
per  (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta 

Improve performance by accumulating 
into partial sum locally, then complete 
reduction globally at the end of the 
iteration.
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Barrier synchronization primitive
▪ barrier(num_threads)  

▪ Barriers are a conservative way to express 
dependencies 

▪ Barriers divide computation into phases 

▪ All computations by all threads before the barrier 
complete before any computation in any thread 
after the barrier begins 

- In other words, all computations after the 
barrier are assumed to depend on all 
computations before the barrier

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                            A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver (SPMD execution model)

Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta 
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Shared address space solver: one barrier
int     n;               // grid size 
bool    done = false; 
LOCK    myLock; 
BARRIER myBarrier; 
float diff[3];  // global diff, but now 3 copies 

float *A = allocate(n+2, n+2); 

void solve(float* A) { 
  float myDiff;   // thread local variable 
  int index = 0;  // thread local variable 

  diff[0] = 0.0f; 
  barrier(myBarrier, NUM_PROCESSORS);  // one-time only: just for init 

  while (!done) { 
    myDiff = 0.0f; 
    // 
    // perform computation (accumulate locally into myDiff)  
    // 
    lock(myLock); 
    diff[index] += myDiff;    // atomically update global diff 
    unlock(myLock); 
    diff[(index+1) % 3] = 0.0f; 
    barrier(myBarrier, NUM_PROCESSORS); 
    if (diff[index]/(n*n) < TOLERANCE) 
      break; 
    index = (index + 1) % 3; 
  } 
}

Idea: 
Remove dependencies by using different diff 
variables in successive loop iterations 

Trade off footprint for removing dependencies! 
(a common parallel programming technique)   

Grid solver example from: Culler, Singh, and Gupta 
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▪ Data-parallel programming model 
- Synchronization: 

- Single logical thread of control, but iterations of forall loop may be 
parallelized by the system (implicit barrier at end of forall loop body) 

- Communication 
- Implicit in loads and stores (like shared address space) 
- Special built-in primitives for more complex communication patterns: 

e.g., reduce 

▪ Shared address space 
- Synchronization: 

- Mutual exclusion required for shared variables (e.g., via locks) 
- Barriers used to express dependencies (between phases of computation) 

- Communication 
- Implicit in loads/stores to shared variables

Solver implementation in two programming models
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We will defer discussion of the message 
passing expression of solver to a later class.
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Summary
▪ Amdahl’s Law 

- Overall maximum speedup from parallelism is limited by amount of 
serial execution in a program 

▪ Aspects of creating a parallel program 
- Decomposition to create independent work, assignment of work to 

workers, orchestration (to coordinate processing of work by workers), 
mapping to hardware 

- We’ll talk a lot about making good decisions in each of these phases in 
the coming lectures (in practice, they are very inter-related) 

▪ Focus today: identifying dependencies 

▪ Focus soon: identifying locality, reducing synchronization


