
Parallel Computing
Stanford CS149, Winter 2019

Lecture 4:

Parallel Programming Basics

Stanford CS149, Winter 2019

Quiz
export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

This is an ISPC function.

It contains a loop nest.

Which iterations of the loop(s) are parallelized
by ISPC? Which are not?

Answer: none

Stanford CS149, Winter 2019

Parallel program instances were created
when the sinx() ispc function was called

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

Call to sinx()
Begin executing programCount
instances of sinx() (ISPC code)

Sequential execution (C code)

Sequential execution
 (C code)

sinx() returns.
Completion of ISPC program instances.
Resume sequential execution

1 2 3 4 5 6 7 8

Each instance will run the code in the ispc function serially.
(parallelism exists because there are multiple program instances,
not the code that defines an ispc function)

Stanford CS149, Winter 2019

Creating a parallel program
▪ Thought process:

1. Identify work that can be performed in parallel
2. Partition work (and also data associated with the work)
3. Manage data access, communication, and synchronization

▪ Recall one of our main goals is speedup *
For a fixed computation:

Speedup(P processors) =
Time (1 processor)

Time (P processors)

* Other goals include high efficiency (cost, area, power, etc.)
 or working on bigger problems than can fit on one machine

Stanford CS149, Winter 2019

Creating a parallel program
Problem to solve

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

Decomposition

Assignment

Orchestration

Mapping

These responsibilities may be assumed by
the programmer, by the system (compiler,

runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta

Stanford CS149, Winter 2019

Problem decomposition
▪ Break up problem into tasks that can be carried out in parallel

▪ In general: create at least enough tasks to keep all execution
units on a machine busy

Key challenge of decomposition:
identifying dependencies

(or... a lack of dependencies)

Stanford CS149, Winter 2019

Amdahl’s Law: dependencies limit
maximum speedup due to parallelism

▪ You run your favorite sequential program...

▪ Let S = the fraction of sequential execution that is inherently
sequential (dependencies prevent parallel execution)

▪ Then maximum speedup due to parallel execution ≤ 1/S

Stanford CS149, Winter 2019

A simple example
▪ Consider a two-step computation on a N x N image

- Step 1: double brightness of all pixels
(independent computation on each pixel)

- Step 2: compute average of all pixel values

▪ Sequential implementation of program
- Both steps take ~ N2 time, so total time is ~ 2N2

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1

Stanford CS149, Winter 2019

▪ Overall performance:

Speedup

Speedup ≤ 2

First attempt at parallelism (P processors)
▪ Strategy:

- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: execute serially
- time for phase 2: N2

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m

N2 N2

1

P

Sequential program

Parallel program

Stanford CS149, Winter 2019

Parallelizing step 2
▪ Strategy:

- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: compute partial sums in parallel, combine results serially
- time for phase 2: N2/P + P

▪ Overall performance:

- Speedup

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note: speedup → P when N >> P

overhead:
combining the partial sums

Parallel program

P

Stanford CS149, Winter 2019

Amdahl’s law
▪ Let S = the fraction of total work that is inherently sequential

▪ Max speedup on P processors given by:

speedup

Num Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

Stanford CS149, Winter 2019

Decomposition
▪ Who is responsible for performing decomposition?

- In most cases: the programmer

▪ Automatic decomposition of sequential programs continues
to be a challenging research problem
(very difficult in general case)
- Compiler must analyze program, identify dependencies

- What if dependencies are data dependent (not known at compile time)?

- Researchers have had modest success with simple loop nests

- The “magic parallelizing compiler” for complex, general-purpose code has not
yet been achieved

Stanford CS149, Winter 2019

Assignment
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

Stanford CS149, Winter 2019

Assignment
▪ Assigning tasks to threads **

- Think of “tasks” as things to do
- Think of threads as “workers”

▪ Goals: balance workload, reduce communication costs

▪ Can be performed statically, or dynamically during execution

▪ Although programmer is often responsible for decomposition,
many languages/runtimes take responsibility for assignment.

** I had to pick a term
(will explain in a second)

Stanford CS149, Winter 2019

Assignment examples in ISPC
export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assumes N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[i] = value;
 }
}

Decomposition of work by loop iteration

Programmer-managed assignment:
Static assignment
Assign iterations to ISPC program instances in
interleaved fashion

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 foreach (i = 0 ... N)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[i] = value;
 }
}

Decomposition of work by loop iteration

foreach construct exposes independent work to system
System-manages assignment of iterations (work) to ISPC
program instances (abstraction leaves room for dynamic
assignment, but current ISPC implementation is static)

Stanford CS149, Winter 2019

Example 2: static assignment using C++11
threads
void my_thread_start(int N, int terms, float* x, float* results) {
 sinx(N, terms, x, result); // do work
}

void parallel_sinx(int N, int terms, float* x, float* result) {

 int half = N/2.

 // launch thread to do work on first half of array
 std::thread t1(my_thread_start, half, terms, x, result);

 // do work on second half of array in main thread
 sinx(N - half, terms, x + half, result + half);

 t1.join();
}

Decomposition of work by loop iteration

Programmer-managed static assignment
This program assigns iterations to threads in
a blocked fashion
(first half of array assigned to the spawned
thread, second half assigned to main thread)

Stanford CS149, Winter 2019

Dynamic assignment using ISPC tasks
void foo(uniform float* input,
 uniform float* output,
 uniform int N)
{
 // create a bunch of tasks
 launch[100] my_ispc_task(input, output, N);
}

Worker
thread 0

Worker
thread 1

Worker
thread 2

Worker
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Implementation of task assignment to threads: after completing current task,
worker thread inspects list and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime assign tasks to
worker threads

Stanford CS149, Winter 2019

Orchestration
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

Stanford CS149, Winter 2019

Orchestration
▪ Involves:

- Structuring communication

- Adding synchronization to preserve dependencies if necessary

- Organizing data structures in memory

- Scheduling tasks

▪ Goals: reduce costs of communication/sync, preserve locality
of data reference, reduce overhead, etc.

▪ Machine details impact many of these decisions
- If synchronization is expensive, might use it more sparsely

Stanford CS149, Winter 2019

Mapping to hardware
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

Stanford CS149, Winter 2019

Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware execution units

▪ Example 1: mapping by the operating system
- e.g., map pthread to HW execution context on a CPU core

▪ Example 2: mapping by the compiler
- Map ISPC program instances to vector instruction lanes

▪ Example 3: mapping by the hardware
- Map CUDA thread blocks to GPU cores (future lecture)

▪ Some interesting mapping decisions:
- Place related threads (cooperating threads) on the same processor

(maximize locality, data sharing, minimize costs of comm/sync)

- Place unrelated threads on the same processor (one might be bandwidth limited and
another might be compute limited) to use machine more efficiently

Stanford CS149, Winter 2019

Example: last class I asked you a question
about mapping
▪ Consider an application that creates two threads

▪ The application runs on the processor shown below
- Two cores, two-execution contexts per core, up to instructions per clock, one instruction

is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s pthreads
to the processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were implementing the OS, how would to map the two
threads to the four execution contexts?

▪ Another question: How would you map
threads to execution contexts if your C
program spawned five threads?

Stanford CS149, Winter 2019

A parallel programming example

Stanford CS149, Winter 2019

A 2D-grid based solver
▪ Solve partial differential equation (PDE) on (N+2) x (N+2) grid

▪ Iterative solution
- Perform Gauss-Seidel sweeps over grid until convergence

N

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j]

 + A[i,j+1] + A[i+1,j]);

Grid solver example from: Culler, Singh, and Gupta

Stanford CS149, Winter 2019

Grid solver algorithm
C-like pseudocode for sequential algorithm is provided below

const int n;
float* A; // assume allocated to grid of N+2 x N+2 elements

void solve(float* A) {

 float diff, prev;
 bool done = false;

 while (!done) { // outermost loop: iterations
 diff = 0.f;
 for (int i=1; i<n i++) { // iterate over non-border points of grid
 for (int j=1; j<n; j++) {
 prev = A[i,j];
 A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] +
 A[i,j+1] + A[i+1,j]);
 diff += fabs(A[i,j] - prev); // compute amount of change
 }
 }

 if (diff/(n*n) < TOLERANCE) // quit if converged
 done = true;
 }
}

Grid solver example from: Culler, Singh, and Gupta

Stanford CS149, Winter 2019

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

Each row element depends on element to left.

Each row depends on previous row.

Note: the dependencies illustrated on this
slide are element data dependencies in one
iteration of the solver (in one iteration of the
“while not done” loop)

Stanford CS149, Winter 2019

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

There is independent work along the diagonals!

Good: parallelism exists!

Possible implementation strategy:
1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: independent work is hard to exploit
Not much parallelism at beginning and end of
computation.
Frequent synchronization (after completing
each diagonal)

Stanford CS149, Winter 2019

Let’s make life easier on ourselves

▪ Idea: improve performance by changing the algorithm to one
that is more amenable to parallelism

- Change the order grid cell cells are updated

- New algorithm iterates to same solution (approximately),
but converges to solution differently
- Note: floating-point values computed are different, but solution still

converges to within error threshold

- Yes, we needed domain knowledge of Gauss-Seidel method
for solving a linear system to realize this change is
permissible for the application

Stanford CS149, Winter 2019

New approach: reorder grid cell update via
red-black coloring

N

N

Update all red cells in parallel

When done updating red cells ,
update all black cells in parallel
(respect dependency on red cells)

Repeat until convergence

Stanford CS149, Winter 2019

Possible assignments of work to processors

Question: Which is better? Does it matter?

Answer: it depends on the system this program is running on

Stanford CS149, Winter 2019

Consider dependencies (data flow)
1. Perform red update in parallel

2. Wait until all processors done with update

3. Communicate updated red cells to other processors

4. Perform black update in parallel

5. Wait until all processors done with update

6. Communicate updated black cells to other processors

7. Repeat

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

Stanford CS149, Winter 2019

Communication resulting from assignment

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors

Stanford CS149, Winter 2019

Three ways to think about writing this
program

▪ Data parallel

▪ SPMD / shared address space

▪ Message passing (will wait until a future class)

Stanford CS149, Winter 2019

Data-parallel expression of solver

Stanford CS149, Winter 2019

const int n;

float* A = allocate(n+2, n+2)); // allocate grid

void solve(float* A) {

 bool done = false;
 float diff = 0.f;
 while (!done) {
 for_all (red cells (i,j)) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j] + A[i,j+1]);
 reduceAdd(diff, abs(A[i,j] - prev));
 }

 if (diff/(n*n) < TOLERANCE)
 done = true;
 }
}

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

decomposition:
individual grid
elements constitute
independent work

Assignment: ???

Orchestration:
handled by system
(End of for_all block is implicit wait for all
workers before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta

Orchestration: handled by system
(builtin communication primitive: reduceAdd)

Stanford CS149, Winter 2019

Shared address space (with SPMD threads)
expression of solver

Stanford CS149, Winter 2019

Shared address space expression of solver
SPMD execution model

▪ Programmer is responsible for synchronization

▪ Common synchronization primitives:

- Locks (provide mutual exclusion): only one
thread in the critical region at a time

- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

Stanford CS149, Winter 2019

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j], A[i,j+1]);
 lock(myLock)
 diff += abs(A[i,j] - prev));
 unlock(myLock);
 }
 }
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver (pseudocode in SPMD execution model)

Value of threadId is different for
each SPMD instance: use value to
compute region of grid to work on

Each thread computes the rows it is
responsible for updating

Grid solver example from: Culler, Singh, and Gupta

Assume these are global variables
(accessible to all threads)

Assume solve function is executed by
all threads. (SPMD-style)

Stanford CS149, Winter 2019

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j], A[i,j+1]);
 lock(myLock)
 diff += abs(A[i,j] - prev));
 unlock(myLock);
 }
 }
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver

Do you see a potential performance
problem with this implementation?

Grid solver example from: Culler, Singh, and Gupta

(pseudocode in SPMD
execution model)

Stanford CS149, Winter 2019

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver (SPMD execution model)

compute per worker partial sum

Now only only lock once per thread, not once
per (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta

Improve performance by accumulating
into partial sum locally, then complete
reduction globally at the end of the
iteration.

Stanford CS149, Winter 2019

Barrier synchronization primitive
▪ barrier(num_threads)

▪ Barriers are a conservative way to express
dependencies

▪ Barriers divide computation into phases

▪ All computations by all threads before the barrier
complete before any computation in any thread
after the barrier begins

- In other words, all computations after the
barrier are assumed to depend on all
computations before the barrier

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4

Stanford CS149, Winter 2019

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver (SPMD execution model)

Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta

Stanford CS149, Winter 2019

Shared address space solver: one barrier
int n; // grid size
bool done = false;
LOCK myLock;
BARRIER myBarrier;
float diff[3]; // global diff, but now 3 copies

float *A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff; // thread local variable
 int index = 0; // thread local variable

 diff[0] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS); // one-time only: just for init

 while (!done) {
 myDiff = 0.0f;
 //
 // perform computation (accumulate locally into myDiff)
 //
 lock(myLock);
 diff[index] += myDiff; // atomically update global diff
 unlock(myLock);
 diff[(index+1) % 3] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff[index]/(n*n) < TOLERANCE)
 break;
 index = (index + 1) % 3;
 }
}

Idea:
Remove dependencies by using different diff
variables in successive loop iterations

Trade off footprint for removing dependencies!
(a common parallel programming technique)

Grid solver example from: Culler, Singh, and Gupta

Stanford CS149, Winter 2019

▪ Data-parallel programming model
- Synchronization:

- Single logical thread of control, but iterations of forall loop may be
parallelized by the system (implicit barrier at end of forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives for more complex communication patterns:

e.g., reduce

▪ Shared address space
- Synchronization:

- Mutual exclusion required for shared variables (e.g., via locks)
- Barriers used to express dependencies (between phases of computation)

- Communication
- Implicit in loads/stores to shared variables

Solver implementation in two programming models

Stanford CS149, Winter 2019

We will defer discussion of the message
passing expression of solver to a later class.

Stanford CS149, Winter 2019

Summary
▪ Amdahl’s Law

- Overall maximum speedup from parallelism is limited by amount of
serial execution in a program

▪ Aspects of creating a parallel program
- Decomposition to create independent work, assignment of work to

workers, orchestration (to coordinate processing of work by workers),
mapping to hardware

- We’ll talk a lot about making good decisions in each of these phases in
the coming lectures (in practice, they are very inter-related)

▪ Focus today: identifying dependencies

▪ Focus soon: identifying locality, reducing synchronization

