Why Parallelism?
Why Efficiency?

Parallel Computing
Stanford C5149, Winter 2019

Leela James

“Long Time Coming”
(A Change is Gonna Come)

“I'd heard a bit about parallelism in (5110.
And so | was just itching to start tuning code for bunch of cores.”

- Leela James, on the inspiration for “Long Time Coming”

Stanford (5149, Winter 2019

Juan

\\\\\\ '/’&\\

Mario

Prof. Kayvon

Stanford (5149, Winter 2019

One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|quickly

We care about performance * We're going to use multiple
We care about efficiency processors to get it

* Note: different motivation from “concurrent programming” using pthreads like in (5110 Stanford (5149, Winter 2019

DEMO 1

(CS149 Winter 2019’ first parallel program)

Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

. execution time (using 1 processor)
speedup(using P processors) = —— M —
execution time (using P processors)

Stanford (5149, Winter 2019

Class observations from demo 1

® Communication limited the maximum speedup achieved

= In the demo, the communication was telling each other the partial sums

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)

Stanford (5149, Winter 2019

DEMO 2

(scaling up to four “processors”)

Stanford (5149, Winter 2019

Class observations from demo 2

® |mbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle),
while others were still working on their assigned task

® [mproving the distribution of work improved speedup

Stanford (5149, Winter 2019

DEMO 3

(massively parallel execution)

Stanford (5149, Winter 2019

Class observations from demo 3

B The problem | just gave you has a significant amount of
communication compared to computation

® Communication costs can dominate a parallel
computation, severely limiting speedup

Stanford (5149, Winter 2019

Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel

2. Assigning work to processors

3. Managing communication/synchronization between the processors so
that it does not limit speedup

m Abstractions/mechanisms for performing the above tasks

- Writing code in popular parallel programming languages

Stanford (5149, Winter 2019

Course theme 2:

Parallel computer hardware implementation: how parallel
computers work

B Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

® Why do | need to know about hardware?

- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)

- Because you care ahout efficiency and performance
(you are writing parallel programs after all!)

Stanford (5149, Winter 2019

Course theme 3:
Thinking about efficiency

m FAST != EFFICIENT

m Just because your program runs faster on a parallel computer, it does
not mean it is using the hardware efficiently

- |s 2x speedup on computer with 10 processors a good result?
B Programmer’s perspective: make use of provided machine capabilities

B HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

Stanford (5149, Winter 2019

Course logistics

Stanford (5149, Winter 2019

Getting started

B (reate an account on the course web site BARALLEL COMPUTING

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel

° d processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
- cs WI n e r fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well
[J L {] as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good

parallel programs requires an understanding of key machine performance characteristics, this course will cover both
parallel hardware and software design.

Basic Info

Tues/Thurs 4:30-6:00pm
Room 420-040
Instructors: Kunle Olukotun and Kayvon Fatahalian

See the course info page for more info on course policies and logistics.

m Sign up for the course on Piazza

Jan 8 Course Introduction + Why Parallelism?

Motivations for parallel chip decisions, challenges of parallelizing code

Jan 10 A Modern Multi-Core Processor
orms of parallelism: multicore, SIMD, threading + understanding latency and bandwidth

(4 o (J
| tt S o I a zza co m c a SS z 4 o W 1 n z Jan 15 Parallel Programming Models and their Corresponding HW/SW Implementations
[] . ways of thinking about parallel programs, and their corresponding hardware implementations, ISPC programming

Jan 17 Parallel Programming Basics

Thought process of parallelizing a program in data parallel and shared address space models

Jan 22 Program Optimization 1: Work Distribution and Scheduling

Achieving good work distributicn while minimizing overhead, scheduling Cilk programs with work stealing

Jan 24 Program Optimization 2: Locality and Communication
‘u‘essage passing, asyncvs. b OCKINg sends/receives, p\pellnmg, Increasing a rithmetic intensity, avmdmg contention

B Textbook

- There is no course textbook, but please see web site for suggested references

Stanford (5149, Winter 2019

Commenting and contributing to lectures

B We have no texthook for this class and so the lecture slides are

A parallel computer is ajcollection of processing elements
that cooperate to solve problems|quickly

We care about performance *
We care about efficiency

Previous | Next

-

kayvonf 12 months

ago
Edit Delete
Like Archive

the primary course reference

We're going to use multiple
processors to get it

Slide 2 of 36

Question: In 15-213's web proxy assignment you gained experience writing concurrent
programs using pthreads. Think about your motivation for programming with threads in that
assignment. How was it different from the motivation to create multi-threaded programs in this
class? (e.g., consider Assignment 1, Program 1)

Hint: What is the difference between concurrent execution and paralle/ execution?

Back to Lecture Thumbnails

Y

jpaulson 72 months

ago
Edit Delete
Like Archive

2

gbarboza "2 months

ago
Edit Delete
Unlike Archive

P
(N
briandecost "2

months ago
Edit Delete

Unlike

(@\

.

Xiao "2 months ago
Edit Delete

Archive

Unlike Archive

Threads are about latency (responding quickly); parallel execution is about minimizing total
time. These two metrics are totally independent.

Edit: A previous version of this comment said "work" instead of "time" (because | forgot "work"
was a technical term at CMU), prompting some of the comments below.

've always liked the way these slides explain it; concurrency is about splitting a program up
into tasks that can communicate and synchronize with each other, whereas parallelism is about
making use of multiple processing units to decrease the time it takes for a program to run.

o by 2 neonlsl
L e U y S PeopIE!

The thing is that there's an overhead to splitting up data or tasks to take advantage of multiple
processing units -- it's a tradeoff. The parallel implementation is actually more total work (in
terms of total instructions executed), but your task gets done quicker (if you did a good job
writing your code). Though | guess you might save energy by not having a bunch of cores idling
while one core crunches away at a serial task...

-)
ard hv ? nennle
Liked b y 2 people!

To further elaborate on concurrency: it is about doing things simultaneously, and includes not
only the division of a single program. Concurrent execution was important before multi-core
processors even existed. | suppose you could call scheduling multiple tasks on a single CPU
"false" concurrency, as from the CPU's perspective they are not concurrent, but nonetheless to
the users they looked simultaneous and that is important. Often times, the user prefers
progress on all tasks rather than ultimate throughput (assuming single CPU). This goes back to
the proxy example mentioned by professor Kayvon. Even if our proxy was running on a single
core machine, the concurrency would still be very useful as we do not wish to starve any single
request.

Liked by 4 people!
(e DY 4 peopie!

Stanford (5149, Winter 2019

Participation requirement (comments)

m You are encouraged to submit one well-thought-out
comment per lecture (only two comments per week)

m Why do we write?

- Because writing is a way many good architects and systems
designers force themselves to think (explaining clearly and
thinking clearly are highly correlated!)

Stanford (5149, Winter 2019

What we are looking for in comments

B Try to explain the slide (as if you were trying to teach your classmate while

studying for an exam)
- “The instructor said this, but if you think about it this way instead it makes much more sense...”

m Explain what is confusing to you:
- “What I'm totally confused by here was...”

B (Challenge classmates with a question
- For example, make up a question you think might be on an exam.

B Provide a link to an alternate explanation
= “This site has a really good description of how multi-threading works...”

® Mention real-world examples
- For example, describe all the parallel hardware components in the XBox One

m (Constructively respond to another student’s comment or question
- “@segfault21, are you sure that is correct? | thought that Kayvon said...”

m |tis OKAY (and even encouraged) to address the same topic (or repeat

someone else’s summary, explanation or idea) in your own words

- “@funkysenior17’s point is that the overhead of communication...”
Stanford (5149, Winter 2019

Five programming assignments

Task Queue

- @O — O —

fread — [O][O][O]|:]|O]|O

Completed Tasks \
-~ @@@© «— 0O

. | . Assignment 2:
Assignment 1: I.SPC programming multi-threaded threaded
on multi-core C(PUs
web server

Assignment 3: parallel Assignment 4: Writing a renderer
large graph algorithms in CUDA on NVIDIA GPUs
on a multi-core CPU

Assignment 5: distributed
programming in Spark

Stanford (5149, Winter 2019

Written assignments

m Every two-weeks we will have a take-home written
assignment

Stanford (5149, Winter 2019

Grades

45% Programming assignments (5)
25% Written Assignments (5)
30% Exams (2)

Each student (or group) gets up to five late days on programming
assignments (max 3 days per assignment)

Stanford (5149, Winter 2019

Why parallelism?

Stanford (5149, Winter 2019

Some historical context:
why not parallel processing?

B Single-threaded CPU performance doubling ~ every 18 months

® [mplication: working to parallelize your code was often not worth the time
- Software developer does nothing, code gets faster next year. Woot!

10000.00
S
%1000.00 . ~
S o®
O °
T 100.00 ooo
é]_) .'0‘
= o o
®

S 10.00 .
o ® o
= o ©
®
3 1.00 —
oC o ©

0.10

| | | | | | | | | |
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Year

Image credit: Olukutun and Hammond, ACM Queue 2005 Stanford 5149, Winter 2019

Why parallel processing? (80's, 90s, early 2000s)

The answer until ~15 years ago: to realize performance improvements that
exceeded what CPU performance improvements could provide

For database
applications

For supercomputing applications

Thinking Machines (CM2) 5GI Origin 2000 — 128 CPUs Sun Enterprise 10000

(1987) (1996) (circa 1997)
65,536 1-bit processors + Photo shows ASIC Blue Mountain 64 UltraSPARC-11 processors
2,048 32 bit FP processors supercomputer at Los Alamos

(48 Origin 2000’s)

Stanford (5149, Winter 2019

Until ~15 years ago: two significant reasons
for processor performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

Stanford (5149, Winter 2019

What is a computer program?

int main(int argc, char** argv) {
int x = 1;
for (int i=0; i<10; i++) {

X = X + X3

}
printf(“%d\n”, x);

return 0;

Stanford (5149, Winter 2019

Review: what is a program?

From a processor’s perspective,
a program is a sequence of
instructions.

_main:

100000110
10000011 :
10000014 :
100000118
100000f1f:
100000122 :
100000126 :
100000f2d:
100000134 :
100000138
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150 :
100000f55 :
100000f5c:
100000f5f :
100000f61 :
100000166 :
100000168 :
100000f6b:
100000f6d:
10000071 :
100000172 :

pushg %rbp

movq %rsp, srbp
subqg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 <_main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), %eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 < _main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), %esi
movb $0, %al

callg 14

xorl %esi, %esi
movl %eax, -28(%rbp)
movl %esi, %eax
addqg $32, %rsp

popq %rbp

retqg

Stanford (5149, Winter 2019

Review: what does a processor do?

It runs programs!

Processor executes instruction
referenced by the program
counter (PC)

(executing the instruction will modify
machine state: contents of registers,
memory, CPU state, etc.)

Move to next instruction...

PC)

Then execute it...

And so on...

_main:

100000110:
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
10000026
100000 2d:
100000134 :
100000138
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150
100000155
100000f5c:
10000015 :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, srbp
subqg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 < _main+0x45>
movl -20(%rbp), %eax
addl -20(%rbp), Z%eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), %esi
movb $0, %al

callq 14

xorl %esi, %esi
movl %eax, -28(%rbp)
movl %esi, %eax
addqg $32, %rsp

popq %rbp

retq

Stanford (5149, Winter 2019

Instruction level parallelism (ILP)

B Processors did in fact leverage parallel execution to make
programs run faster, it was just invisible to the programmer

® [nstruction level parallelism (ILP)

- ldea: Instructions must appear to be executed in
program order. BUT independent instructions
can be executed simultaneously by a processor Tl

without impacting program correctness mul
st

- Superscalar execution: processor dynamically
finds independent instructions in an instruction ~ add
sequence and executes them in parallel add

ri,
rl,
ril,

ro,
rl,

Dependent instructions

ro, ro
ri, ril
mem[r2]

ro, r3
r4, rb

Independent instructions

Stanford (5149, Winter 2019

ILP example
a = xX*x + y*y + z*z

Consider the following program:
// assume ro=x, rl=y, r2=z

mul re, ro, ro
mul rl, rl, rl
mul r2, r2, r2
add ro, ro, ril
add r3, ro, r2

// now r3 stores value of program variable ‘a’

This program has five instructions, so it will take five clocks to execute, correct?
Can we do better?

Stanford (5149, Winter 2019

ILP example

a = xX*x + y*y + z*z

Z Z

X X y y
NN N M N M

ILP =3 * * *
ILP =1 +
".P=1 +

D —

Stanford (5149, Winter 2019

Superscalar execution

a = xX*x + y*y + z*z
// assume ro=x, rl=y, r2=z

mul re, ro, ro
mul rl, rl, rl
mul r2, r2, r2
add ro, ro, rl
add r3, ro, r2

vih WwWwpNEPRE

// r3 stores value of variable ¢a’

Superscalar execution: processor automatically finds independent instructions in an
instruction sequence and executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instruction 4
Stanford (5149, Winter 2019

A more complex example

Program (sequence of instructions)

PC Instruction
| a = 2 value during
o1 | b = a execution
2 | tmp2 = a + b // 6
03 | tmp3 = tmp2 + a // 8
04 | tmp4d = b + b // 8
o5 | tmp5 = b * b // 16
06 | tmp6 = tmp2 + tmp4 // 14
07 | tmp7 = tmp5 + tmp6 // 360
08 | if (tmp3 > 7)
09 print tmp3
else
10 print tmp7

Instruction dependency graph
00 01
02 04 05

03 06
08 07
09 10

What does it mean for a superscalar processor to “respect program order”?

Stanford (5149, Winter 2019

Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

Speedup

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991) Stanford (5149, Winter 2019

ILP tapped out + end of frequency scaling

Processor clock rate stops
increasing

10,000,000
Duag
1,000,000
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
100,000
10,000
1,000
100
10
O
A
1
e o
o0’
0
1970 1975 1980 1985 1990

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

No further benefit from ILP

B =Transistor density
@® =Cockfrequency
A =Power

® =Instruction-level parallelism (ILP)

2000 2005 2010

Stanford (5149, Winter 2019

III

The “power wal

Power consumed by a transistor:
Dynamic power o< capacitive load x voltage2 x frequency

Static power: transistors burn power even when inactive due to leakage

High power = high heat
Power is a critical design constraint in modern processors

TDP
Intel Core i7 (in this laptop): 45W
Intel Core i7 2700K (fast desktop CPU): 95W
NVIDIA GTX 780 GPU 250W
Mobile phone processor 1/,-2W

World’s fastest supercomputer megawatts

Standard microwave oven 700W

Source: Intel, NVIDIA, Wikipedia, Top500.0rg Stanford (5149, Winter 2019

Power draw as a function of frequency

Dynamic power « capacitive load x voltage? X frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

CPU Power Consumption
i7-2600K vs. i7-3770K

250

8 i17-3770K Dynamic Power
W i7-3770K Static Power

2

B i7-2600K Dynamic Power
B i7-2600K Static Power

b
un
o

CPU Power Consumption (W)
-y
3

L
o

Clockspeed (GHz) |dontcare

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195 Stanford (5149, Winter 2019

Single-core performance scaling

The rate of single-instruction stream 1o.00,000
performance scaling has decreased . - _
(almost to zero) HOm0.008 % o £ °

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

1. Frequency scaling limited by power

2. ILP scaling tapped out 10,000

1,000

Architects are now building faster
processors by adding more execution
units that run in parallel

(Or units that are specialized for a specific task 10
(like graphics, or audio/video playback)

100

B =Transistor density
® =Clockfrequency

Software must be written to be parallel coo A ~fome

to see performance gains. No more free ° | | |
1970 1975 1980 1985 1990 1995 2000 2005 2010
lunch for software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford 5149, Winter 2019

From the New York Times

Intel's Big Shift After Hitting Technical Wall

The warning came first from a group of hobbyists that tests the speeds of computer chips. This
year, the group discovered that the Intel Corporation's newest microprocessor was running
slower and hotter than 1ts predecessor.

What they had stumbled upon was a major threat to Intel's longstanding approach to dominating
the semiconductor industry - relentlessly raising the clock speed of 1ts chips.

Then two weeks ago, Intel, the world's largest chip maker, publicly acknowledged that 1t had hit
a "thermal wall" on 1ts microprocessor line. As a result, the company 1s changing 1ts product
strategy and disbanding one of its most advanced design groups. Intel also said that 1t would
abandon two advanced chip development projects, code-named Tejas and Jayhawk.

Now, Intel 1s embarked on a course already adopted by some of 1ts major rivals: obtaining more
computing power by stamping multiple processors on a single chip rather than straining to
increase the speed of a single processor.

John Markoff, New York Times, May 17, 2004

Stanford (5149, Winter 2019

Recap: why parallelism?

B The answer 15 years ago

- To realize performance improvements that exceeded what CPU performance
improvements could provide

(specifically, in the early 2000°s, what clock frequency scaling could provide)

- Because if you just waited until next year, your code would run faster on the
next generation (PU

m The answer today:

- Because it is the primary way to achieve significantly higher application
performance for the foreseeable future *

* We'll revisit this comment later in the heterogeneous processing lecture Stanford €149, Winter 2019

Intel Skylake (201 5) (aka “6th generation Core i7”)

Quad-core CPU + multi-core GPU integrated on one chip

AN &8 =
‘ & :}3“‘?';
= core

TR

il

Stanford (5149, Winter 2019

“coprocessor” (2016)

17290

Intel Xeon Ph

5 Ghz)

72 cores (1

[0t
i

s X
55
i

Stanford (5149, Winter 2019

NVIDIA Maxwell GTX 1080 GPU (2016)

0 major processing blocks
ut much, much more parallelism available... details coming next class)

PCI| Express 3.0 Host Interface

GPC GPC

Raster Engine Raster Engine
~8 . = = 8 -
TPC \ TPC TPC TPC TPC Tl
PolyMorph Engina PolyMorph Eng ne PalyMerph Engine PolyMotph Ergino Polylorph Engine y PolyMarph Engine

Maemory Controller
Jajjonuon Alowa

[

s 3
=) 3
.E o
5 2
[§] (¢
: :
E S
£ 3

Memory Controller
J9]j0Jju0g A1owap

— — — | — — — | —
— — — | — — — — | —
I I
Sm S SM SM sm SM

PolyMorph Engine Polylcrph Engine PelyMorgh Engino PolyMorph Engino PolyMorph Engine PoyMorpa Engine PalyMorph Engine FolyMorph Enginn PolyMorph Engine

1PC . 1EC 1EC 1PC 1PC 1ec 1PC

Memory Controller
13jjonuon Aloway

| — || — — — | —
— | — — || — 1 — — | —

I I I I I I
sm SM SM

BC rC

+8 +*3 *3- * +*3 3 +3 .= 2 +3

Raster Engine Raster Engine

GPC GPC

Stanford (5149, Winter 2019

Mobile parallel processing

Power constraints heavily influence design of mobile systems

| mEEE mEEe EEEE EEEE |
& G HEEE SRS l.l‘l‘l‘ EEEE BEEE -
|7 7 HEEN EREN oonoos EEEE EEEE ™
! EEER EEEE EEEE EEEE ;

—e=r EHEE NN
| EEEN EEEE

ett—_——

Apple A10: (in iPhone 7) NVIDIA Tegra X1:
2 “big” CPU cores + 2 “small” CPU cores + GPU 4 ARM A57 CPU cores +
+ image processor (and more!) on one chip 4 ARM A53 CPU cores +

NVIDIA GPU + image processor...

Stanford (5149, Winter 2019

Mobile parallel processing

Raspberry Pi
Quad-core ARM A53 CPU

Stanford (5149, Winter 2019

Supercomputing

m Today: clusters of multi-core CPUs + GPUs

m (Oak Ridge National Laboratory: Titan (#9 supercomputer in world)
- 18,688 x 16 core AMD CPUs + 18,688 NVIDIA K20X GPUs

] "’
A !
,..",’,"/.)

Stanford (5149, Winter 2019

Summary

m Today, single-thread-of-control performance is improving very
slowly

- To run programs significantly faster, programs must utilize multiple
processing elements

- Which means you need to know how to write parallel code

m Writing parallel programs can be challenging

- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

m | suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

B Welcome to (5149!

Stanford (5149, Winter 2019

