
Parallel Computing 
Stanford CS149, Winter 2019

Lecture 1:

Why Parallelism? 
Why Efficiency?
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Tunes

Leela James 
“Long Time Coming” 

(A Change is Gonna Come)

“I’d heard a bit about parallelism in CS110.  
And so I was just itching to start tuning code for bunch of cores.” 

- Leela James, on the inspiration for “Long Time Coming”
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Prof. Kayvon

Juan
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One common definition

A parallel computer is a collection of processing elements 
that cooperate to solve problems quickly

We care about performance * 
We care about efficiency

We’re going to use multiple 
processors to get it

* Note: different motivation from “concurrent programming” using pthreads like in CS110



 Stanford CS149, Winter 2019

DEMO 1 
(CS149 Winter 2019’s first parallel program) 



 Stanford CS149, Winter 2019

Speedup
One major motivation of using parallel processing: achieve a speedup 

For a given problem: 

speedup( using P processors )    = 
execution time (using 1 processor)

execution time (using P processors)
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Class observations from demo 1

▪ Communication limited the maximum speedup achieved 
- In the demo, the communication was telling each other the partial sums 

▪ Minimizing the cost of communication improved speedup 
- Moved students (“processors”) closer together (or let them shout)
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DEMO 2 
(scaling up to four “processors”)
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Class observations from demo 2

▪ Imbalance in work assignment limited speedup 
- Some students (“processors”) ran out work to do (went idle), 

while others were still working on their assigned task  

▪ Improving the distribution of work improved speedup
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DEMO 3 
(massively parallel execution)
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Class observations from demo 3

▪ The problem I just gave you has a significant amount of 
communication compared to computation  

▪ Communication costs can dominate a parallel 
computation, severely limiting speedup
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Course theme 1: 
Designing and writing parallel programs ... that scale!

▪ Parallel thinking 
1. Decomposing work into pieces that can safely be performed in parallel 
2. Assigning work to processors 
3. Managing communication/synchronization between the processors so 

that it does not limit speedup 

▪ Abstractions/mechanisms for performing the above tasks 
- Writing code in popular parallel programming languages 



 Stanford CS149, Winter 2019

Course theme 2: 
Parallel computer hardware implementation: how parallel 
computers work

▪ Mechanisms used to implement abstractions efficiently 
- Performance characteristics of implementations 

- Design trade-offs: performance vs. convenience vs. cost  

▪ Why do I need to know about hardware? 
- Because the characteristics of the machine really matter 

(recall speed of communication issues in earlier demos) 

- Because you care about efficiency and performance 
(you are writing parallel programs after all!) 
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Course theme 3: 
Thinking about efficiency

▪ FAST  !=  EFFICIENT 

▪ Just because your program runs faster on a parallel computer, it does 
not mean it is using the hardware efficiently 

- Is 2x speedup on computer with 10 processors a good result? 

▪ Programmer’s perspective: make use of provided machine capabilities 

▪ HW designer’s perspective: choosing the right capabilities to put in 
system (performance/cost, cost = silicon area?, power?, etc.) 
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Course logistics
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Getting started
▪ Create an account on the course web site 

- http://35.227.169.186/cs149/winter19 

▪ Sign up for the course on Piazza 
- https://piazza.com/class/jqgzf4qojwk1nz 

▪ Textbook 
- There is no course textbook, but please see web site for suggested references
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Commenting and contributing to lectures
▪ We have no textbook for this class and so the lecture slides are 

the primary course reference
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Participation requirement (comments)
▪ You are encouraged to submit one well-thought-out 

comment per lecture (only two comments per week) 

▪ Why do we write? 
- Because writing is a way many good architects and systems 

designers force themselves to think (explaining clearly and 
thinking clearly are highly correlated!)
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What we are looking for in comments
▪ Try to explain the slide (as if you were trying to teach your classmate while 

studying for an exam) 
- “The instructor said this, but if you think about it this way instead it makes much more sense... ” 

▪ Explain what is confusing to you: 
- “What I’m totally confused by here was...” 

▪ Challenge classmates with a question 
- For example, make up a question you think might be on an exam. 

▪ Provide a link to an alternate explanation 
- “This site has a really good description of how multi-threading works...”  

▪ Mention real-world examples 
- For example, describe all the parallel hardware components in the XBox One 

▪ Constructively respond to another student’s comment or question 
- “@segfault21, are you sure that is correct? I thought that Kayvon said...”  

▪ It is OKAY (and even encouraged) to address the same topic (or repeat 
someone else’s summary, explanation or idea) in your own words 
- “@funkysenior17’s point is that the overhead of communication...”
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Five programming assignments

Assignment 1: ISPC  programming 
on multi-core CPUs

Assignment 4: Writing a renderer 
in CUDA on NVIDIA GPUs

Assignment 2: 
multi-threaded threaded 

web server

Assignment 5: distributed 
programming in Spark

Assignment 3: parallel 
large graph algorithms 

on a multi-core CPU
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Written assignments
▪ Every two-weeks we will have a take-home written 

assignment
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Grades

45%   Programming assignments (5) 
25%   Written Assignments (5) 
30%   Exams (2) 

Each student (or group) gets up to five late days on programming 
assignments (max 3 days per assignment)



 Stanford CS149, Winter 2019

Why parallelism?
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Some historical context: 
why not parallel processing?
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Image credit: Olukutun and Hammond, ACM Queue 2005 

▪ Single-threaded CPU performance doubling ~ every 18 months 
▪ Implication: working to parallelize your code was often not worth the time 

- Software developer does nothing, code gets faster next year. Woot!
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The answer until ~15 years ago: to realize performance improvements that 
exceeded what CPU performance improvements could provide

SGI Origin 2000  — 128 CPUs 
(1996) 

Photo shows ASIC Blue Mountain 
supercomputer at Los Alamos 

(48 Origin 2000’s)

Thinking Machines (CM2) 
(1987) 

65,536 1-bit processors + 
2,048 32 bit FP processors

For supercomputing applications

Why parallel processing? (80’s, 90’s, early 2000’s)

Sun Enterprise 10000 
(circa 1997) 

64 UltraSPARC-II processors

For database 
applications
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Until ~15 years ago: two significant reasons 
for processor performance improvement

1. Exploiting instruction-level parallelism (superscalar execution) 

2. Increasing CPU clock frequency
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What is a computer program?

int main(int argc, char** argv) { 

    int x = 1; 

    for (int i=0; i<10; i++) { 
       x = x + x; 
    } 

    printf(“%d\n”, x); 

    return 0; 
}
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Review: what is a program?
From a processor’s perspective, 
a program is a sequence of 
instructions.

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: retq
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Review: what does a processor do?
It runs programs! 

Processor executes instruction 
referenced by the program 
counter (PC) 
(executing the instruction will modify 
machine state: contents of registers, 
memory, CPU state, etc.) 

Move to next instruction … 

Then execute it… 

And so on…

PC

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: retq
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Instruction level parallelism (ILP)
▪ Processors did in fact leverage parallel execution to make 

programs run faster, it was just invisible to the programmer

▪ Instruction level parallelism (ILP) 
- Idea: Instructions must appear to be executed in 

program order.  BUT independent instructions 
can be executed simultaneously by a processor 
without impacting program correctness 

- Superscalar execution: processor dynamically 
finds independent instructions in an instruction 
sequence and executes them in parallel 

mul  r1, r0, r0 
mul  r1, r1, r1 
st   r1, mem[r2]  
... 
add  r0, r0, r3  
add  r1, r4, r5  
... 
...

Independent instructions

Dependent instructions
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ILP example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has five instructions, so it will take five clocks to execute, correct? 
Can we do better?
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ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*
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Superscalar execution
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// r3 stores value of variable ‘a’

Superscalar execution: processor automatically finds independent instructions in an 
instruction sequence and executes them in parallel on multiple execution units! 

1. 
2.  
3. 
4.  
5.

In this example: instructions 1, 2, and 3 can be executed in parallel 
(on a superscalar processor that determines that the lack of dependencies exists) 

But instruction 4 must come after instructions 1 and 2 

And instruction 5 must come after instruction 4
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A more complex example

a = 2 
b = 4 

tmp2 = a + b        // 6 
tmp3 = tmp2 + a     // 8 
tmp4 = b + b        // 8 
tmp5 = b * b        // 16 
tmp6 = tmp2 + tmp4  // 14 
tmp7 = tmp5 + tmp6  // 30 

if (tmp3 > 7)        
  print tmp3 
else 
  print tmp7 

00 
01 

02 
03 
04 
05 
06 
07 

08 
09 

10 

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

What does it mean for a superscalar processor to “respect program order”?

value during 
execution
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Diminishing returns of superscalar execution

0

1

2

3

0 4 8 12 16

Instruction issue capability of processor (instructions/clock)
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ee
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p

Most available ILP is exploited by a processor capable of issuing four instructions per clock 
(Little performance benefit from building a processor that can issue more)

Source: Culler & Singh (data from Johnson 1991) 
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ILP tapped out + end of frequency scaling

No further benefit from ILP

Processor clock rate stops 
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power
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The “power wall”

Dynamic power         capacitive load × voltage2 × frequency 
Static power: transistors burn power even when inactive due to leakage

Power consumed by a transistor:

High power = high heat 
Power is a critical design constraint in modern processors

Intel Core i7 2700K (fast desktop CPU):       95W 
Intel Core i7 (in this laptop):                              45W 

NVIDIA GTX 780 GPU                                            250W 

TDP

Standard microwave oven                                700W 

Mobile phone processor                                1/2 - 2W 
World’s fastest supercomputer          megawatts

Source: Intel, NVIDIA, Wikipedia, Top500.org

∝
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Power draw as a function of frequency
Dynamic power        capacitive load × voltage2 × frequency 
Static power: transistors burn power even when inactive due to leakage 
Maximum allowed frequency determined by processor’s core voltage

∝

Image credit: “Idontcare”:  posted at: http://forums.anandtech.com/showthread.php?t=2281195
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Single-core performance scaling
The rate of single-instruction stream 
performance scaling has decreased 
(almost to zero) 

1. Frequency scaling limited by power 

2. ILP scaling tapped out 

Architects are now building faster 
processors by adding more execution 
units that run in parallel 
(Or units that are specialized for a specific task 
(like graphics, or audio/video playback) 

Software must be written to be parallel 
to see performance gains. No more free 
lunch for software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= ILP
= Power
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From the New York Times
Intel's Big Shift After Hitting Technical Wall 

 
The warning came first from a group of hobbyists that tests the speeds of computer chips. This 
year, the group discovered that the Intel Corporation's newest microprocessor was running 
slower and hotter than its predecessor. 
 
What they had stumbled upon was a major threat to Intel's longstanding approach to dominating 
the semiconductor industry - relentlessly raising the clock speed of its chips. 
 
Then two weeks ago, Intel, the world's largest chip maker, publicly acknowledged that it had hit 
a "thermal wall" on its microprocessor line. As a result, the company is changing its product 
strategy and disbanding one of its most advanced design groups. Intel also said that it would 
abandon two advanced chip development projects, code-named Tejas and Jayhawk. 
 
Now, Intel is embarked on a course already adopted by some of its major rivals: obtaining more 
computing power by stamping multiple processors on a single chip rather than straining to 
increase the speed of a single processor. 
… John Markoff, New York Times, May 17, 2004
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Recap: why parallelism?

▪ The answer 15 years ago 
- To realize performance improvements that exceeded what CPU performance 

improvements could provide  
(specifically, in the early 2000‘s, what clock frequency scaling could provide) 

- Because if you just waited until next year, your code would run faster on the 
next generation CPU 

▪ The answer today: 
- Because it is the primary way to achieve significantly higher application 

performance for the foreseeable future *

* We’ll revisit this comment later in the heterogeneous processing lecture
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Intel Skylake (2015)
Quad-core CPU + multi-core GPU integrated on one chip

(aka “6th generation Core i7”)

CPU 
core

CPU 
core

CPU 
core

CPU 
core

Integrated GPU
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Intel Xeon Phi 7290 “coprocessor” (2016)
72 cores (1.5 Ghz)
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NVIDIA Maxwell GTX 1080 GPU (2016)
20 major processing blocks 
(but much, much more parallelism available... details coming next class) 
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Mobile parallel processing
Power constraints heavily influence design of mobile systems

NVIDIA Tegra X1: 
4 ARM A57 CPU cores + 
4 ARM A53 CPU cores + 

NVIDIA GPU + image processor...

Apple A10: (in iPhone 7) 
2 “big” CPU cores +  2 “small” CPU cores + GPU 

+ image processor (and more!) on one chip



 Stanford CS149, Winter 2019

Mobile parallel processing

Raspberry Pi 3 
Quad-core ARM A53 CPU



 Stanford CS149, Winter 2019

Supercomputing
▪ Today: clusters of multi-core CPUs + GPUs 

▪ Oak Ridge National Laboratory: Titan (#9 supercomputer in world) 
- 18,688 x 16 core AMD CPUs + 18,688 NVIDIA K20X GPUs
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Summary
▪ Today, single-thread-of-control performance is improving very 

slowly 
- To run programs significantly faster, programs must utilize multiple 

processing elements 
- Which means you need to know how to write parallel code 

▪ Writing parallel programs can be challenging 
- Requires problem partitioning, communication, synchronization 
- Knowledge of machine characteristics is important 

▪ I suspect you will find that modern computers have tremendously 
more processing power than you might realize, if you just use it! 

▪ Welcome to CS149!


