
Parallel Computing
Stanford CS149, Winter 2019

Lecture 1:

Why Parallelism?
Why Efficiency?

 Stanford CS149, Winter 2019

Tunes

Leela James
“Long Time Coming”

(A Change is Gonna Come)

“I’d heard a bit about parallelism in CS110.
And so I was just itching to start tuning code for bunch of cores.”

- Leela James, on the inspiration for “Long Time Coming”

 Stanford CS149, Winter 2019

Hi!

Prof. Kayvon

Juan

Prof. Olukotun
Mario

 Stanford CS149, Winter 2019

One common definition

A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We care about performance *
We care about efficiency

We’re going to use multiple
processors to get it

* Note: different motivation from “concurrent programming” using pthreads like in CS110

 Stanford CS149, Winter 2019

DEMO 1
(CS149 Winter 2019’s first parallel program)

 Stanford CS149, Winter 2019

Speedup
One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

 Stanford CS149, Winter 2019

Class observations from demo 1

▪ Communication limited the maximum speedup achieved
- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improved speedup
- Moved students (“processors”) closer together (or let them shout)

 Stanford CS149, Winter 2019

DEMO 2
(scaling up to four “processors”)

 Stanford CS149, Winter 2019

Class observations from demo 2

▪ Imbalance in work assignment limited speedup
- Some students (“processors”) ran out work to do (went idle),

while others were still working on their assigned task

▪ Improving the distribution of work improved speedup

 Stanford CS149, Winter 2019

DEMO 3
(massively parallel execution)

 Stanford CS149, Winter 2019

Class observations from demo 3

▪ The problem I just gave you has a significant amount of
communication compared to computation

▪ Communication costs can dominate a parallel
computation, severely limiting speedup

 Stanford CS149, Winter 2019

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so

that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

 Stanford CS149, Winter 2019

Course theme 2:
Parallel computer hardware implementation: how parallel
computers work

▪ Mechanisms used to implement abstractions efficiently
- Performance characteristics of implementations

- Design trade-offs: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter

(recall speed of communication issues in earlier demos)

- Because you care about efficiency and performance
(you are writing parallel programs after all!)

 Stanford CS149, Winter 2019

Course theme 3:
Thinking about efficiency

▪ FAST != EFFICIENT

▪ Just because your program runs faster on a parallel computer, it does
not mean it is using the hardware efficiently

- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities

▪ HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

 Stanford CS149, Winter 2019

Course logistics

 Stanford CS149, Winter 2019

Getting started
▪ Create an account on the course web site

- http://35.227.169.186/cs149/winter19

▪ Sign up for the course on Piazza
- https://piazza.com/class/jqgzf4qojwk1nz

▪ Textbook
- There is no course textbook, but please see web site for suggested references

 Stanford CS149, Winter 2019

Commenting and contributing to lectures
▪ We have no textbook for this class and so the lecture slides are

the primary course reference

 Stanford CS149, Winter 2019

Participation requirement (comments)
▪ You are encouraged to submit one well-thought-out

comment per lecture (only two comments per week)

▪ Why do we write?
- Because writing is a way many good architects and systems

designers force themselves to think (explaining clearly and
thinking clearly are highly correlated!)

 Stanford CS149, Winter 2019

What we are looking for in comments
▪ Try to explain the slide (as if you were trying to teach your classmate while

studying for an exam)
- “The instructor said this, but if you think about it this way instead it makes much more sense... ”

▪ Explain what is confusing to you:
- “What I’m totally confused by here was...”

▪ Challenge classmates with a question
- For example, make up a question you think might be on an exam.

▪ Provide a link to an alternate explanation
- “This site has a really good description of how multi-threading works...”

▪ Mention real-world examples
- For example, describe all the parallel hardware components in the XBox One

▪ Constructively respond to another student’s comment or question
- “@segfault21, are you sure that is correct? I thought that Kayvon said...”

▪ It is OKAY (and even encouraged) to address the same topic (or repeat
someone else’s summary, explanation or idea) in your own words
- “@funkysenior17’s point is that the overhead of communication...”

 Stanford CS149, Winter 2019

Five programming assignments

Assignment 1: ISPC programming
on multi-core CPUs

Assignment 4: Writing a renderer
in CUDA on NVIDIA GPUs

Assignment 2:
multi-threaded threaded

web server

Assignment 5: distributed
programming in Spark

Assignment 3: parallel
large graph algorithms

on a multi-core CPU

 Stanford CS149, Winter 2019

Written assignments
▪ Every two-weeks we will have a take-home written

assignment

 Stanford CS149, Winter 2019

Grades

45% Programming assignments (5)
25% Written Assignments (5)
30% Exams (2)

Each student (or group) gets up to five late days on programming
assignments (max 3 days per assignment)

 Stanford CS149, Winter 2019

Why parallelism?

 Stanford CS149, Winter 2019

Some historical context:
why not parallel processing?

Year

R
el

at
iv

e
C

PU
 P

er
fo

rm
an

ce

Image credit: Olukutun and Hammond, ACM Queue 2005

▪ Single-threaded CPU performance doubling ~ every 18 months
▪ Implication: working to parallelize your code was often not worth the time

- Software developer does nothing, code gets faster next year. Woot!

 Stanford CS149, Winter 2019

The answer until ~15 years ago: to realize performance improvements that
exceeded what CPU performance improvements could provide

SGI Origin 2000 — 128 CPUs
(1996)

Photo shows ASIC Blue Mountain
supercomputer at Los Alamos

(48 Origin 2000’s)

Thinking Machines (CM2)
(1987)

65,536 1-bit processors +
2,048 32 bit FP processors

For supercomputing applications

Why parallel processing? (80’s, 90’s, early 2000’s)

Sun Enterprise 10000
(circa 1997)

64 UltraSPARC-II processors

For database
applications

 Stanford CS149, Winter 2019

Until ~15 years ago: two significant reasons
for processor performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

 Stanford CS149, Winter 2019

What is a computer program?

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

 Stanford CS149, Winter 2019

Review: what is a program?
From a processor’s perspective,
a program is a sequence of
instructions.

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: retq

 Stanford CS149, Winter 2019

Review: what does a processor do?
It runs programs!

Processor executes instruction
referenced by the program
counter (PC)
(executing the instruction will modify
machine state: contents of registers,
memory, CPU state, etc.)

Move to next instruction …

Then execute it…

And so on…

PC

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: retq

 Stanford CS149, Winter 2019

Instruction level parallelism (ILP)
▪ Processors did in fact leverage parallel execution to make

programs run faster, it was just invisible to the programmer

▪ Instruction level parallelism (ILP)
- Idea: Instructions must appear to be executed in

program order. BUT independent instructions
can be executed simultaneously by a processor
without impacting program correctness

- Superscalar execution: processor dynamically
finds independent instructions in an instruction
sequence and executes them in parallel

mul r1, r0, r0
mul r1, r1, r1
st r1, mem[r2]
...
add r0, r0, r3
add r1, r4, r5
...
...

Independent instructions

Dependent instructions

 Stanford CS149, Winter 2019

ILP example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

mul r0, r0, r0
mul r1, r1, r1
mul r2, r2, r2
add r0, r0, r1
add r3, r0, r2

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has five instructions, so it will take five clocks to execute, correct?
Can we do better?

 Stanford CS149, Winter 2019

ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*

 Stanford CS149, Winter 2019

Superscalar execution
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

mul r0, r0, r0
mul r1, r1, r1
mul r2, r2, r2
add r0, r0, r1
add r3, r0, r2

// r3 stores value of variable ‘a’

Superscalar execution: processor automatically finds independent instructions in an
instruction sequence and executes them in parallel on multiple execution units!

1.
2.
3.
4.
5.

In this example: instructions 1, 2, and 3 can be executed in parallel
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instruction 4

 Stanford CS149, Winter 2019

A more complex example

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
 print tmp3
else
 print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

What does it mean for a superscalar processor to “respect program order”?

value during
execution

 Stanford CS149, Winter 2019

Diminishing returns of superscalar execution

0

1

2

3

0 4 8 12 16

Instruction issue capability of processor (instructions/clock)

Sp
ee

du
p

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

Source: Culler & Singh (data from Johnson 1991)

 Stanford CS149, Winter 2019

ILP tapped out + end of frequency scaling

No further benefit from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

 Stanford CS149, Winter 2019

The “power wall”

Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage

Power consumed by a transistor:

High power = high heat
Power is a critical design constraint in modern processors

Intel Core i7 2700K (fast desktop CPU): 95W
Intel Core i7 (in this laptop): 45W

NVIDIA GTX 780 GPU 250W

TDP

Standard microwave oven 700W

Mobile phone processor 1/2 - 2W
World’s fastest supercomputer megawatts

Source: Intel, NVIDIA, Wikipedia, Top500.org

∝

 Stanford CS149, Winter 2019

Power draw as a function of frequency
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

∝

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195

 Stanford CS149, Winter 2019

Single-core performance scaling
The rate of single-instruction stream
performance scaling has decreased
(almost to zero)

1. Frequency scaling limited by power

2. ILP scaling tapped out

Architects are now building faster
processors by adding more execution
units that run in parallel
(Or units that are specialized for a specific task
(like graphics, or audio/video playback)

Software must be written to be parallel
to see performance gains. No more free
lunch for software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= ILP
= Power

 Stanford CS149, Winter 2019

From the New York Times
Intel's Big Shift After Hitting Technical Wall

The warning came first from a group of hobbyists that tests the speeds of computer chips. This
year, the group discovered that the Intel Corporation's newest microprocessor was running
slower and hotter than its predecessor.

What they had stumbled upon was a major threat to Intel's longstanding approach to dominating
the semiconductor industry - relentlessly raising the clock speed of its chips.

Then two weeks ago, Intel, the world's largest chip maker, publicly acknowledged that it had hit
a "thermal wall" on its microprocessor line. As a result, the company is changing its product
strategy and disbanding one of its most advanced design groups. Intel also said that it would
abandon two advanced chip development projects, code-named Tejas and Jayhawk.

Now, Intel is embarked on a course already adopted by some of its major rivals: obtaining more
computing power by stamping multiple processors on a single chip rather than straining to
increase the speed of a single processor.
… John Markoff, New York Times, May 17, 2004

 Stanford CS149, Winter 2019

Recap: why parallelism?

▪ The answer 15 years ago
- To realize performance improvements that exceeded what CPU performance

improvements could provide
(specifically, in the early 2000‘s, what clock frequency scaling could provide)

- Because if you just waited until next year, your code would run faster on the
next generation CPU

▪ The answer today:
- Because it is the primary way to achieve significantly higher application

performance for the foreseeable future *

* We’ll revisit this comment later in the heterogeneous processing lecture

 Stanford CS149, Winter 2019

Intel Skylake (2015)
Quad-core CPU + multi-core GPU integrated on one chip

(aka “6th generation Core i7”)

CPU
core

CPU
core

CPU
core

CPU
core

Integrated GPU

 Stanford CS149, Winter 2019

Intel Xeon Phi 7290 “coprocessor” (2016)
72 cores (1.5 Ghz)

 Stanford CS149, Winter 2019

NVIDIA Maxwell GTX 1080 GPU (2016)
20 major processing blocks
(but much, much more parallelism available... details coming next class)

 Stanford CS149, Winter 2019

Mobile parallel processing
Power constraints heavily influence design of mobile systems

NVIDIA Tegra X1:
4 ARM A57 CPU cores +
4 ARM A53 CPU cores +

NVIDIA GPU + image processor...

Apple A10: (in iPhone 7)
2 “big” CPU cores + 2 “small” CPU cores + GPU

+ image processor (and more!) on one chip

 Stanford CS149, Winter 2019

Mobile parallel processing

Raspberry Pi 3
Quad-core ARM A53 CPU

 Stanford CS149, Winter 2019

Supercomputing
▪ Today: clusters of multi-core CPUs + GPUs

▪ Oak Ridge National Laboratory: Titan (#9 supercomputer in world)
- 18,688 x 16 core AMD CPUs + 18,688 NVIDIA K20X GPUs

 Stanford CS149, Winter 2019

Summary
▪ Today, single-thread-of-control performance is improving very

slowly
- To run programs significantly faster, programs must utilize multiple

processing elements
- Which means you need to know how to write parallel code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

▪ I suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

▪ Welcome to CS149!

