Why Parallelism?
Why Efficiency?

Parallel Computing
Stanford (5149, Fall 2020

Fait

David
Matthew
\\\\-‘ ’_\\j';'\\‘ . >
Prof. Olukotun

Stanford (5149, Fall 2020

One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|quickly

We care about performance * We're going to use multiple
We care about efficiency processors to get it

* Note: different motivation from “concurrent programming” using threads like in (5110 Stanford €5149. Fall 2020

DEMO 1

(CS149 Fall 2020’s first parallel program)

Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

. execution time (using 1 processor)
speedup(using P processors) = ———m—M —M M
execution time (using P processors)

Stanford (5149, Fall 2020

Class observations from demo 1

m Communication limited the maximum speedup achieved

= In the demo, the communication was telling each other the partial sums

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)

Stanford (5149, Fall 2020

DEMO 2

(scaling up to four “processors”)

Stanford (5149, Fall 2020

Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle),
while others were still working on their assigned task

m |[mproving the distribution of work improved speedup

Stanford (5149, Fall 2020

DEMO 3

(massively parallel execution)

Stanford (5149, Fall 2020

Class observations from demo 3

m The problem | just gave you has a significant amount of
communication compared to computation

m Communication costs can dominate a parallel
computation, severely limiting speedup

Stanford (5149, Fall 2020

Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel

2. Assigning work to processors

3. Managing communication/synchronization between the processors so
that it does not limit speedup

m Abstractions/mechanisms for performing the above tasks

- Writing code in popular parallel programming languages

Stanford (5149, Fall 2020

Course theme 2:

Parallel computer hardware implementation: how parallel
computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Why do | need to know about hardware?

- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)

- Because you care about efficiency and performance
(you are writing parallel programs after all!)

Stanford (5149, Fall 2020

Course theme 3:
Thinking about efficiency

m FAST !'= EFFICIENT

m Just because your program runs faster on a parallel computer, it does
not mean it is using the hardware efficiently

- Is 2x speedup on computer with 10 processors a good resulit?
B Programmer’s perspective: make use of provided machine capabilities

m HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

Stanford (5149, Fall 2020

Course logistics

Stanford (5149, Fall 2020

GEttlng started PARALLEL COMPUTING

From smart phones, to multi-core CPUs and GPUSs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well
as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good
parallel programs requires an understanding of key machine performance characteristics, this course will cover both

m The course web site

Basic Info

Tues/Thurs 2:30-3:50pm

- http: / /CS1 49 sta nfo rd.edu e Fatahalian nd Kunle Olukotun

See the course info page for more info on course policies and logistics.

FALL 2020 STUDENTS: PLEASE SIGN UP ON PIAZZA FOR ANNOUNCEMENTS.

YOU CAN WORKWITH A PARTNER IN CS149. WANT US TO ASSIGN YOU A
PARTNER? USE OUR PARTNER REQUEST FORM.

m Sign up for the course on Piazza

Sep 15 Course Introduction + Why Parallelism?
Motivations for parallel chip decisions, challenges of parallelizing code

(J
- ® Sep 17 A Modern Multi-Core Processor
[] [] Forms of parallelism: multicore, SIMD, threading + understanding latency and bandwidth

Sep 22 Parallel Programming Models and their Corresponding HW/SW Implementations
Ways of thinking about parallel programs, and their corresponding hardware implementations, ISPC programming

Sep 24 Parallel Programming Basics
Thought process of parallelizing a program in data parallel and shared address space models

Sep 29 Program Optimization 1: Work Distribution and Scheduling
Achieving good work distribution while minimizing overhead, scheduling Cilk programs with work stealing

Oct 1 Program Optimization 2: Locality and Communication

Message passing, async vs. blocking sends/receives, pipelining, increasing arithmetic intensity, avoiding contention
CUDA programming abstractions, and how they are implemented on modern GPUs

- If you want us to match you with a partner

B Textbook

- Thereis no course textbook (the internet is
plenty good these days), but please see course
web site for suggested references

Stanford (5149, Fall 2020

Four programming assignments

Pool

Assignment 1: ISPC programming

Task Queue

-~ (@@ @©©© — O _l

Thread

®)

O

O||=:O]|1O

Completed Tasks

~([@@@@@© «— O

-

Assignment 2:

on multi-core C(PUs scheduler for a task graph

Assignment 3: Writing a renderer Assignment 4: parallel
in CUDA on NVIDIA GPUs large graph algorithms
on a multi-core (PU

Plus a few optional extra credit challenges... ;-)

Optional assignment 5:
(will boost exam grade)

Stanford (5149, Fall 2020

Written assignments

m Approximately every two-weeks we will have a take-home
written assignment

m Written assignments contain modified versions of previous
exam questions, so consider them practice for the exam

Stanford (5149, Fall 2020

Commenting and contributing to lectures

We have no textbook for this class and so the lecture slides are the
primary course reference

The website supports commentingona
per-slide basis

Why Parallelism? Why Efficiency? e

s It is computationally expensive for the processor to determine dependencies between
rrastogi instructions. The following PPT (slides 9/10) provides an example of how the number of
checks grows with the number of instructions that are simultaneously dispatched:

I nStru Cti on IEVEI pa ra I IEI ism (I LP) http://www.cs.cmu.edu/afs/cs/academic/class/15740-f15/www/lectures/11-superscalar-

pipelining.pdf

This additional cost is likely one of the predominant reasons that ILP has plateaued at 4

- Processors did in faCt Ieverage para“el exe(lItion to make simultaneous instructions. To circumvent this issue, architects have tried to force the
programs run faSter it was just i“ViSible tO the programmer compiler to solve the dependency issue using VLIW (very long instruction word). To
7

summarize VLIW, if a processor contains 5 independent execution units, the compiler will
have 5 operations in the "very long instruction word" that the processor will map to the 5
execution units: https://en.wikipedia.org/wiki/Very_long_instruction_word. This way

[|nstru(tion Ievel para"elism ("_P) dependency checking is the responsibility of software and not hardware.

Dependent instructions
- . . . | am not sure if VLIW has helped significantly pushed the four simultaneous instruction
|dea: Instructions must appear to be executed in threshold though. If somebody knows, please share.

program order. BUT independent instructions

can be executed Slmunaneous'y by PpRES BULSCTS A0, S0 e ! Question: The key phrase on this slide is that a processor must execute instructions in a
without 'mpa(tmg plagian correctness mul rl, rl, rl1 < kayvonf manner "appears" as if they were executed in program order. This is a key idea in this class.
st rl, mem[r2] e —
- Superscalar execution: processor dynamically ‘e What is program order?
finds independent instructions in an instruction add re, ro, r3 < And what does it mean for the results of a program's execution to appear as if instructions
add rl, r4, r5 — were executed in program order?

sequence and executes them in parallel

And finally... Why is the program order guarantee a useful one? (What if the results of
execution were inconsistent with the results that would be obtained if the instructions were
executed in program order?)

Independent instructions
Q!

void And what does it mean for the results of a program's execution to appear as if instructions
Previous | Next --- Slide 30 of 48 Back to Lecture Thumbnails were executed in program order?

A programmer might write something like the code below.

X =a+b
print(x)
y =c+d
print(y)

Stanford (5149, Fall 2020

Participation (comments)

m You are encouraged to submit one well-thought-out
comment per lecture (only two comments per week)

m Why do we write?

- Because writing is a way many good architects and systems
designers force themselves to think (explaining clearly and
thinking clearly are highly correlated!)

m But take it seriously, this is your participation grade.

Stanford (5149, Fall 2020

What we are looking for in comments

® Try to explain the slide (as if you were trying to teach your classmate while
studying for an exam)
- “The instructor said this, but if you think about it this way instead it makes much more sense...”

m Explain what is confusing to you:
- “What I'm totally confused by here was...”

B (Challenge classmates with a question
- For example, make up a question you think might be on an exam.

B Provide a link to an alternate explanation
= “This site has a really good description of how multi-threading works...”

B Mention real-world examples
- For example, describe all the parallel hardware components in the XBox One

B (Constructively respond to another student’s comment or question
- “@segfault21, are you sure that is correct? | thought that Prof. Kayvon said...”
B |tis OKAY (and even encouraged) to address the same topic (or repeat

someone else’s summary, explanation or idea) in your own words
- “@funkysenior19’s point is that the overhead of communication...”

Stanford (5149, Fall 2020

Grades

42% Programming assignments (4)
25% Written Assignments (5)
28% Exam

5% Asynchronous participation (comments)

Reminder: we can match you with a partner! See Piazza for our
partner request form!

Stanford (5149, Fall 2020

Expectations

m We plan to be flexible with students this quarter

- If you need exceptions to policies, just come ask us, we
understand the quarter might be very unpredictable

But...

B We expect all students in the class to work hard

- We expect working and baseline performance handins of all
programming assignments, and a passing exam score, to
achieve a passing grade

Stanford (5149, Fall 2020

Why parallelism?

Stanford (5149, Fall 2020

Some historical context:
why not parallel processing?

B Single-threaded CPU performance doubling ~ every 18 months

® [mplication: working to parallelize your code was often not worth the time
- Software developer does nothing, code gets faster next year. Woot!

10000.00
S
%1000.00 . ~
= o®
Q °
T 100.00 oo
Dq_) .'0'
D) o &
®

S 10.00 .
O © o
= o ©
0]
S 1.00 —
0 o ©

0.10

| | | | | | | | | |
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Year

Image credit: Olukutun and Hammond, ACM Queue 2005 Stanford C5149, Fall 2020

Why parallel processing? (80’s, 90’s, early 2000’s)

The answer until ~15 years ago: to realize performance improvements that
exceeded what CPU performance improvements could provide

For database
applications

For supercomputing applications

Thinking Machines (CM2) 5GI Origin 2000 — 128 CPUs Sun Enterprise 10000

(1987) (1996) (circa 1997)
65,536 1-bit processors + Photo shows ASIC Blue Mountain 64 UltraSPARC-11 processors
2,048 32 bit FP processors supercomputer at Los Alamos

(48 Origin 2000’s)

Stanford (5149, Fall 2020

Until ~15 years ago: two significant reasons
for processor performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

Stanford (5149, Fall 2020

What is a computer program?

int main(int argc, char** argv) {
int x = 1;
for (int i=0; i<10; i++) {
X = X + X;
}
printf(“%d\n”, x);

return 9;

Stanford (5149, Fall 2020

Review: what is a program?

From a processor’s perspective,
a program is a sequence of
Instructions.

_main:

100000110
100000111 :
100000114 :
100000118 :
1000001 1f:
100000122 :
10000026 :
100000f2d :
100000134 :
100000138 :
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d :
100000150 :
100000155 :
100000f5c:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b :
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, %rbp
subq $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 < _main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), %eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), %esi
movb $0, %al

callg 14

xorl %esi, %esi
movl %eax, -28(%rbp)
movl %esi, %eax
addq $32, %rsp

popq %rbp

retqg

Stanford (5149, Fall 2020

Review: what does a processor do?

It runs programs!

Processor executes instruction
referenced by the program
counter (P()

(executing the instruction will modify
machine state: contents of registers,
memory, (PU state, etc.)

Move to next instruction...

PC)

Then execute it...

And so on...

_main:

100000110:
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
100000f26:
100000f2d :
100000134 :
100000138
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d :
100000150 :
100000155 :
100000f5c¢:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 < _main+Ox45>
movl -20(%rbp), %eax
addl -20(%rbp), %eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 < _main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), %esi
movb $0, %al

callq 14

xorl %esi, %esi
movl %eax, -28(%rbp)
movl %esi, %eax
addq $32, %rsp

popq %rbp

retqg

Stanford (5149, Fall 2020

Instruction level parallelism (ILP)

m Processors did in fact leverage parallel execution to make
programs run faster, it was just invisible to the programmer

m [nstruction level parallelism (ILP)

- ldea: Instructions must appear to be executed in
program order. BUT independent instructions
can be executed simultaneously by a processor 1

without impacting program correctness mul
st

- Superscalar execution: processor dynamically
finds independent instructions in an instruction add
sequence and executes them in parallel 26

ri,
ri,
ri,

ro,
rl,

Dependent instructions

ro, ro
rli, ril
mem|[r2]

ro, r3
r4, r5

Independent instructions

Stanford (5149, Fall 2020

ILP example
a = xX*xX + y*y + z*z

Consider the following program:
// assume roe=x, rl=y, r2=z
mul re, ro, ro

mul rl, rl, rl

mul r2, r2, r2

add re, ro, ril

add r3, ro, r2

// now r3 stores value of program variable ‘a’

This program has five instructions, so it will take five clocks to execute, correct?
Can we do better?

Stanford (5149, Fall 2020

ILP example

a = xX*xX + y*y + z*z

Z Z

x X y y
N M N4 N X

ILP =3 * * *
ILP =1 +
".P=1 +

N —

Stanford (5149, Fall 2020

Superscalar execution

a = xX*xX + y*y + z*z
// assume ro=x, rl=y, r2=z

mul ré, roe, ro
mul rl, rl, rl
mul r2, r2, r2
add ro, ro, rl
add r3, ro, r2

vih wWwDpNEPRE

// r3 stores value of variable ¢a’

Superscalar execution: processor automatically finds independent instructions in an
instruction sequence and executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instruction 4
Stanford (5149, Fall 2020

A more complex example

Program (sequence of instructions)

PC Instruction
0| 3 = 2 value during
o1 | b = 4 execution
02 | tmp2 = a + b // 6
03 | tmp3 = tmp2 + a // 8
04 | tmp4d = b + b // 8
o5 | tmp5 = b * b // 16
06 | tmp6 = tmp2 + tmpd4d // 14
07 | tmp7 = tmp5 + tmp6 // 30
08 | if (tmp3 > 7)
09 print tmp3
else
10 print tmp7

Instruction dependency graph
00 01
02 04 05

03 06
08 07
09 10

What does it mean for a superscalar processor to “respect program order”?

Stanford (5149, Fall 2020

Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

Speedup

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991) Stanford CS149, Fall 2020

ILP tapped out + end of frequency scaling

10,000,000
Dual-Core Itanium 2
1,000,000 | -
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun) »
100,000
10,000
Processor clock rate stops
increasing
1,000
100
10 No further benefit from ILP
1 B =Transistor density
. o | o ® =Clock frequency
e A =Power
o ® =Instruction-level parallelism (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford (5149, Fall 2020

III

The “power wal

Power consumed by a transistor:
Dynamic power o< capacitive load x voltage2 x frequency

Static power: transistors burn power even when inactive due to leakage
High power = high heat
Power is a critical design constraint in modern processors

TDP
Intel Core i7 (in this laptop): 45W
Intel Core i7 2700K (fast desktop CPU): 95W
NVIDIA Titan V GPU 250W
Mobile phone processor 1/,-2W

World’s fastest supercomputer megawatts

Standard microwave oven 700W

Source: Intel, NVIDIA, Wikipedia, Top500.0rg Stanford (5149, Fall 2020

Power draw as a function of frequency

Dynamic power « capacitive load x voltage? X frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

CPU Power Consumption
i7-2600K vs. i7-3770K

250

8 i17-3770K Dynamic Power
W i7-3770K Static Power

2

B i7-2600K Dynamic Power
B i7-2600K Static Power

b
un
o

CPU Power Consumption (W)
-y
3

L
o

Clockspeed (GHz) |dontcare

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195 Stanford (5149, Fall 2020

Single-core performance scaling

The rate of single-instruction stream zo.000,000
performance scaling has decreased
(almost to zero)

1,000,000

100,000

1. Frequency scaling limited by power

2. ILP scaling tapped out 10,000

1,000

Architects are now building faster
processors by adding more execution
units that run in parallel

(Or units that are specialized for a specific task 10
(like graphics, or audio/video playback)

100

Software must be written to be parallel
to see performance gains. No more free °
lunch for software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

Dual-Core Itanium 2 o

Intel CPU Trends :

(sources: Intel, Wikipedia, K. Olukotun)

B =Transistor density

® =C(Clockfrequency
oo A =Power
® =ILP

1970

1975 1980 1985 1990 1995 2000 2005 2010

Stanford (5149, Fall 2020

From the New York Times

Intel's Big Shift After Hitting Technical Wall

The warning came first from a group of hobbyists that tests the speeds of computer chips. This
year, the group discovered that the Intel Corporation's newest microprocessor was running
slower and hotter than 1ts predecessor.

What they had stumbled upon was a major threat to Intel's longstanding approach to dominating
the semiconductor industry - relentlessly raising the clock speed of 1ts chips.

Then two weeks ago, Intel, the world's largest chip maker, publicly acknowledged that 1t had hit
a "thermal wall" on 1ts microprocessor line. As a result, the company 1s changing 1ts product
strategy and disbanding one of its most advanced design groups. Intel also said that 1t would
abandon two advanced chip development projects, code-named Tejas and Jayhawk.

Now, Intel 1s embarked on a course already adopted by some of 1ts major rivals: obtaining more
computing power by stamping multiple processors on a single chip rather than straining to
increase the speed of a single processor.

John Markoff, New York Times, May 17, 2004

Stanford (5149, Fall 2020

Recap: why parallelism?

B The answer up until ~15 years ago

- To realize performance improvements that exceeded what CPU performance
improvements could provide

(specifically, in the early 2000‘s, what clock frequency scaling could provide)

- Because if you just waited until next year, your code would run faster on the
next generation (PU

m The answer today:

- Because it is the primary way to achieve significantly higher application
performance for the foreseeable future *

* We'll revisit this comment later in the heterogeneous processing lecture Stanford C5149, Fall 2020

Intel Coffee Lake (201 7) (aka “8th generation Core i7”)

Six-core CPU + multi-core GPU integrated on one chip

A
i
1
|
|

iy J “Integrated GPU

Stanford (5149, Fall 2020

One thing you will learn in this course

B How to write code that efficiently uses the resourcesin a
modern multi-core CPU

m Example: assignment 1 (coming up!)
We'll talk about these

- My laptop: quad-core Intel Core i7 CPU ,
terms next time!
- Four CPU cores A/‘/

- AVXSIMD vector instructions + hyper-threading
- Baseline: single-threaded C program compiled with -03

- Parallelized program that uses all parallel execution
resources on this CPU...

~32X faster!

And ~41x faster on another example.

Stanford (5149, Fall 2020

17290 (2016)

Intel Xeon Ph

5 Ghz)

72 cores (1

s X
55
i

[
i

Stanford (5149, Fall 2020

NVIDIA Tesla V100 GPU (2017)

5,376 fp32 units grouped into 84 major processing blocks

PCIl Express 3.0 Host Interface

Memory Controller
jejjouon Alowapy

3 =
2 :
c

3 .
> g
E S
g 5

Memory Controller
J8jjonuo) Alowepy

Memory Controller
19jj03u0) Alowey

Stanford (5149, Fall 2020

Supercomputing

® Today: combinations of multi-core CPUs + GPUs
®m (Oak Ridge National Laboratory: Summit (currently #2 supercomputer in world)
- 9,216 x 22-core IBM Power9 CPUs + 27,648 NVIDIA Volta GPUs

,.

-~

Stanford (5149, Fall 2020

Mobile parallel processing

Raspberry Pi

Quad-core ARM A53 CPU

Stanford (5149, Fall 2020

Mobile parallel processing

Power constraints heavily influence the design of mobile systems

Apple A13 Bionic
(in iPhone 11)

2 “big” CPU cores +
4 “small” CPU cores +

Apple-designed multi-core GPU +
Image processor +

Neural Engine for DNN acceleration +
Motion processor

Image Credit: Anandtech / Techinsights Inc.

Stanford (5149, Fall 2020

Parallel + specialized HW

m Achieving high efficiency will be a key theme in this class

B We will discuss how modern systems are not only parallel,
but also specialize processing units to achieve high levels of
power efficiency

Stanford (5149, Fall 2020

Another recent smartphone

Google Pixel 2 Phone:

Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core

Programmable image
processor and DNN accelerator

“Hexagon”
Programmable DSP

data-parallel multi-media
processing

Image Signal Processor j§
ASIC for processing camera [§
sensor pixels

|1}

; r “""' -
:i“ ;;"i " 1PU 10 Block

U | IPU

: Ili- Core 2 ; Core 1
R PU PU

" Cored Core 3

B e

. IPU IPU
i : Core6 Core5

|

"........ “Core 8 i Core'7
M L

Snapdragon
X16 LTE modem

Wi-Fi

Hexagon DSP
THvX All-Wa

| |l'd.e

Qualcomm®

Aqgstic Audio

Qualcomm®
|IZat™ Location

Adreno 540

Graphics Processing
Unit (GPU)

Display Video

Processing Unit Processing Unit g

(DPU) (VPU)

Qualcomm

Spectra 180
Camera

Kryo 280 CPU

Qualcomm
Haven Security

Multi-core GPU

(3D graphics,
Open(CL data-parallel compute)

 Video encode/decode ASIC

- Display engine
(compresses pixels for
transfer to high-res screen)

Multi-core ARM CPU

4 “big cores” + 4 “little cores”
Stanford C5149, Fall 2020

Datacenter-scale applications

\) \ N\ A} WaEamw iy it) T ./ /
\ \ TN - UM \) \) ! ! ! i TN 7
S . L e S T REREE ovmeoomo m) n 2 : ' ~ : TrameWs my
Wll\l Ty I L I ‘ o e— - |
LN WU -y 1 0 - /

: t :
\II| mnl X T\ R B D =y [! . | ! ! | { / 5!_!_..! y My
| : ' by ! = /-

o - w'®

- . §
-

MS t-:z. 5
fr" "'i

C e sl

B 3. i 6:
0
ay tt)a{ﬂ ’7

]
]
]
]
]

dl
L
N
1
]
1

i

.’*:_-é—-.&

;v 4 am:« ‘ n;//#
'Y 4 (l n i

=Y &ﬁﬂ:"‘i‘&dﬂ.ﬁ WFEanveie oran ST N RO 16 NN &’@«@a@a;_c_.la_n-c b

F L

——

- X

o e
'

Google TPU pods

TPU =Tensor Processing Unit: specialized processor for ML computations

’ s

Image Credit: Techinsights Inc. Stanford (5149, Fall 2020

Summary

m Today, single-thread-of-control performance is improving
very slowly

- To run programs significantly faster, programs must utilize multiple
processing elements or specialized processing

- Which means you need to know how to write parallel code

m Writing parallel programs can be challenging

- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

m | suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

Stanford (5149, Fall 2020

Reminders

m This is going to be an unpredictable quarter

m Everyone students and staff are going to need to
help each other out

m We expect that students are going to require
different support based on circumstances

m But that doesn’'t mean expectations aren't high
B Let’s work together to have a great experience

B Welcome to (5149!

B And we remind you to take your mask wearing
seriously when around others.

L3
| ’
\\\ AW

N N \\““" V) \\
h \\\\ QN \‘,\/f&
(N NWNNNWAAN

Prof. Olukotun

Stanford (5149, Fall 2020

