
Parallel Computing
Stanford CS149, Fall 2020

Lecture 14:

Transactional Memory

Stanford CS149, Fall 2020

Raising level of abstraction for synchronization
▪ Previous topic: machine-level atomic operations

- Fetch-and-op, test-and-set, compare-and-swap, load linked-store conditional

▪ Then we used these atomic operations to construct higher level synchronization primitives
in software:
- Locks, barriers

- Lock-free data structures

- We’ve seen how it can be challenging to produce correct programs using these primitives (easy to create
bugs that violate atomicity, create deadlock, etc.)

▪ Today: raising level of abstraction for synchronization even further
- Idea: transactional memory

Stanford CS149, Fall 2020

Transactional Memory (TM)
▪ Memory transaction

- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

▪ Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

▪ Isolation
- No other processor can observe writes before transaction commits

▪ Serializability
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction

Stanford CS149, Fall 2020

Advantages (promise) of transactional memory
▪ Easy to use synchronization construct

- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

▪ Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert
programming with fined-grained locks, with 10% of the development time

▪ Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

▪ Composability
- Safe and scalable composition of software modules

Stanford CS149, Fall 2020

Implementing transactional memory

Stanford CS149, Fall 2020

TM implementation basics
▪ TM systems must provide atomicity and isolation

- While maintaining concurrency as much as possible

▪ Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously

committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

Stanford CS149, Fall 2020

Data versioning policy
Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)

Stanford CS149, Fall 2020

Conflict detection
▪ Must detect and handle conflicts between transactions

- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed)
transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

▪ System must track a transaction’s read set and write set
- Read-set: addresses read during the transaction

- Write-set: addresses written during the transaction

Stanford CS149, Fall 2020

Pessimistic detection
▪ Check for conflicts (immediately) during loads or stores

- Philosophy: “I suspect conflicts might happen, so let’s always check to see if
one has occurred after each memory operation… if I’m going to have to
roll back, might as well do it now to avoid wasted work.”

▪ “Contention manager” decides to stall or abort transaction
when a conflict is detected
- Various policies to handle common case fast

Stanford CS149, Fall 2020

Optimistic detection
▪ Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

▪ On a conflict, give priority to committing transaction

- Other transactions may abort later on

Stanford CS149, Fall 2020

TM implementation space (examples)
▪ Hardware TM systems

- Lazy + optimistic: Stanford TCC
- Lazy + pessimistic: MIT LTM, Intel VTM
- Eager + pessimistic: Wisconsin LogTM
- Eager + optimistic: not practical

▪ Software TM systems
- Lazy + optimistic (rd/wr): Sun TL2
- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

▪ Optimal design remains an open question
- May be different for HW, SW, and hybrid

Stanford CS149, Fall 2020

Software Transactional Memory
atomic {

a.x = t1

a.y = t2

if (a.z == 0) {

a.x = 0

a.z = t3

}

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

tmWr(&a.x, 0);

tmWr(&a.z, t3)

}

tmTxnCommit()

n Software barriers (STM function call) for TM bookkeeping
nVersioning, read/write-set tracking, commit, …
nUsing locks, timestamps, data copying, …

n Requires function cloning or dynamic translation
nFunction used inside and outside of transaction

Stanford CS149, Fall 2020

STM Runtime Data Structures
▪ Transaction descriptor (per-thread)

- Used for conflict detection, commit, abort, …

- Includes the read set, write set, undo log or write buffer

▪ Transaction record (per data)
- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers

- Using version number or shared reader lock

- Exclusive: access by one writer
- Using writer lock that points to owner

- BTW: same way that HW cache coherence works

Stanford CS149, Fall 2020

Mapping Data to Transaction Records

class Foo {
int x;
int y;
}

TxR
x
y

vtbl

Embed in each object

Java/C#

C/C++
Address-based hash

into global table

Cache-line or word
granularity

struct Foo {
int x;
int y;
}

x
y

TxR1
TxR2
. . .

TxRn

Every data item has an associated transaction record

hash
x
y

vtbl TxR1
TxR2
. . .

TxRn

Hash fields or
array elements to global table

f(obj.hash, field.index)

OR

What’s the tradeoff?

Stanford CS149, Fall 2020

Conflict Detection Granularity
▪ Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1 and Txn 2)

▪ Element/field granularity (word)
- Reduces false conflicts

- Improves concurrency (e.g. Txn 1 and Txn 2)

- Increased overhead (time/space)

▪ Cache line granularity (multiple words)
- Matches hardware TM

- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

▪ Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Txn 1

a.x = …

a.y = …

Txn 2

… = … a.z …

Stanford CS149, Fall 2020

An Example STM Algorithm
▪ Based on Intel’s McRT STM [PPoPP’06, PLDI’06, CGO’07]

- Eager versioning, optimistic reads, pessimistic writes

▪ Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits

- Local timestamp per xaction
- Global timestamp value when xaction last validated

▪ Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked

Stanford CS149, Fall 2020

STM Operations
▪ STM read (optimistic)

- Direct read of memory location (eager)
- Validate read data

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

▪ STM write (pessimistic)
- Validate data

- Check if unlocked and data version ≤ local timestamp

- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)

Stanford CS149, Fall 2020

STM Operations (cont)

▪ Read-set validation

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

▪ STM commit

- Atomically increment global timestamp by 2 (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp

Stanford CS149, Fall 2020

STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

}

X1
atomic {
t1 = bar.x;
t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

▪ X1 copies object foo into object bar
▪ X2 should read bar as [0,0] or [9,7]

Stanford CS149, Fall 2020

STM Example

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

}

X1
atomic {
t1 = bar.x;
t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp

Stanford CS149, Fall 2020

TM Implementation Summary 1

▪ TM implementation
- Data versioning: eager or lazy

- Conflict detection: optimistic or pessimistic
- Granularity: object, word, cache-line, …

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)

Stanford CS149, Fall 2020

Challenges for STM Systems
▪ Overhead of software barriers

▪ Function cloning

▪ Robust contention management

▪ Memory model (strong Vs. weak atomicity)

Stanford CS149, Fall 2020

Optimizing Software Transactions

atomic {

a.x = t1

a.y = t2

if (a.z == 0) {

a.x = 0

a.z = t3

}

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

tmWr(&a.x, 0);

tmWr(&a.z, t3)

}

tmTxnCommit()

nMonolithic barriers hide redundant logging & locking from the compiler

Stanford CS149, Fall 2020

Optimizing Software Transactions

atomic {

a.x = t1

a.y = t2

if (a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

n Decomposed barriers expose redundancies

Stanford CS149, Fall 2020

Optimizing Software Transactions

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnLogObjectInt(&a.y, a)
a.y = t2
if (a.z != 0) {

a.x = 0
txnLogObjectInt(&a.z, a)
a.z = t3

}

atomic {
a.x = t1
a.y = t2
if (a.z == 0) {
a.x = 0
a.z = t3
}

}

n Allows compiler to optimize STM code
n Produces fewer & cheaper STM operations

Stanford CS149, Fall 2020

Compiler Optimizations for STM
▪ Standard compiler optimizations

- CSE, PRE, dead-code elimination, …
- Assuming IR supports TM, few compiler mods needed

▪ STM-specific optimizations
- Partial inlining of barrier fast paths

- Often written in optimized assembly
- No barriers for immutable and transaction local data

▪ Impediments to optimizations
- Support for nested transactions
- Dynamically linked STM library
- Dynamic tuning of STM algorithm

Stanford CS149, Fall 2020

Effect of Compiler Optimizations

▪ 1 thread overheads over thread-unsafe baseline

▪ With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization

Stanford CS149, Fall 2020

Function Cloning
n Problem: need two version of functions

n One with and one without STM instrumentation

n Managed languages (Java, C#)
n On demand cloning of methods using JIT

n Unmanaged languages (C, C++)
n Allow programmer to mark TM and pure functions
n TM functions should be cloned by compiler
n Pure functions touch only transaction-local data
§ No need for clones

n All other functions handled as irrevocable actions
n Some overhead for checks and mode transitions

Stanford CS149, Fall 2020

STM Breakout
▪ Given an optimistic read, pessimistic write, eager versioning STM
▪ What steps are required to implement the atomic region

atomic{

obj.f1=42;

}

tx = GetTxDescriptor(); // Assume a way of to get transaction descriptor

OpenForWriteTx(tx, obj);

LogForUndoIntTx(tx, obj, offset); // record old value in the undo log

obj.f1 = 42;

Stanford CS149, Fall 2020

Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming

n Long term issue: energy wasteful
n Lack of strong atomicity

n Costly to provide purely in software

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

Stanford CS149, Fall 2020

Why is STM Slow?
▪ Measured single-thread STM performance

▪ 1.8x – 5.6x slowdown over sequential

▪ Most time goes in read barriers & commit
- Most apps read more data than they write

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

kmeans

E
xe

cu
ti

on
 T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
ti

al
)

0

1

2

3

4

5

6

vacation

STMwrite STMread

STMcommit Busy

Stanford CS149, Fall 2020

Types of Hardware Support
▪ Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)

- Start with an STM system & identify key bottlenecks

- Provide (simple) HW primitives for acceleration, but keep SW barriers

▪ Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW

- No SW barriers

▪ Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, …

Write versioning HW SW SW

Conflict detection HW SW HW

Stanford CS149, Fall 2020

Hardware transactional memory (HTM)

▪ Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

▪ Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

▪ Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)

Stanford CS149, Fall 2020

▪ Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

▪ Coherence requests check R/W bits to detect conflicts
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction

Stanford CS149, Fall 2020

Example HTM implementation: lazy-optimistic

▪ CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers

Stanford CS149, Fall 2020

CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

▪ Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D

Stanford CS149, Fall 2020

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

▪ Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D

Stanford CS149, Fall 2020

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D

Stanford CS149, Fall 2020

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D

Stanford CS149, Fall 2020

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

▪ Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D

Stanford CS149, Fall 2020

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

▪ Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1

Stanford CS149, Fall 2020

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

▪ Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from
another core’s commit

(remote core’s write of A
conflicts with local read of A:
triggers abort of pending
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D

Stanford CS149, Fall 2020

HTM Performance Example

n 2x to 7x over STM performance

nWithin 10% of sequential for one thread

nScales efficiently with number of processors

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

HTM

Stanford CS149, Fall 2020

Hardware transactional memory support in
Intel Haswell architecture
▪ New instructions for “restricted transactional memory” (RTM)

- xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock

- xend
- xabort

- Implementation: tracks read and write set in L1 cache

▪ Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

Stanford CS149, Fall 2020

Summary: transactional memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word)

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol

Parallel Computing
Stanford CS149, Fall 2020

Lecture 14+:

Heterogeneous Parallelism
and Hardware Specialization

Stanford CS149, Fall 2020

I want to begin this lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel
implementation of a compute-bound application is about 40 times

faster on my quad-core laptop than the output of single-threaded C code
compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is,
even if you are using it as efficiently as possible.

Stanford CS149, Fall 2020

Energy-constrained computing

Stanford CS149, Fall 2020

Performance and Power

Specialization (fixed function) ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓 =
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅 ×
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude
of improvement from

specialization?

Stanford CS149, Fall 2020

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford CS149, Fall 2020

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Fall 2020

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Fall 2020

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Fall 2020

Contrast that complexity to the circuit
required to actually perform the operation

0

1

2
3

4
5

6
7

0
1

2
3

4

5

6
7

0
1

2
3

4
5

6
7

Example: 8-bit logical OR

Stanford CS149, Fall 2020

H.264 video encoding: fraction of energy consumed by
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

Stanford CS149, Fall 2020[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as
one CPU core with ~ 1/1000th the
chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Stanford CS149, Fall 2020

Mobile: benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a fixed level of performance for longer
- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

Stanford CS149, Fall 2020

Modern computing: efficiency often matters
more than in the past, not less

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-flash/

http://www.apple.com/hotnews/thoughts-on-flash/

Stanford CS149, Fall 2020

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

▪ CPU cores and graphics cores share
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between
CPU and integrated GPU

▪ Graphics cores are cache coherent
with CPU cores

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics +
media

Shared LLC

System
Agent

(display,
memory,

I/O)

Stanford CS149, Fall 2020

GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-specific, fixed-

function compute resources

Stanford CS149, Fall 2020

Rasterization:
Determining what pixels a triangle overlaps

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale geometry
from coarse geometry

Stanford CS149, Fall 2020

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different
operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in
Google Pixel phone

Stanford CS149, Fall 2020

Anton supercomputer for
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

▪ Custom, low-latency communication

network designed for communication patterns
of N-body simulations

[Developed by DE Shaw Research]

Stanford CS149, Fall 2020

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer
architecture research conferences on the
topic of ASICs or accelerators for deep
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)

Stanford CS149, Fall 2020

Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit
multiply-add ALUs

▪ ~10-20x more efficient than
GPU at image processing tasks
(Google’s claims at HotChips ’18)

Stanford CS149, Fall 2020

Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

Stanford CS149, Fall 2020

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2020

Modern FPGAs
▪ A lot of area devoted to hard

gates
- Memory blocks (SRAM)
- DSP blocks (multiplier)

Stanford CS149, Fall 2020

Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

Stanford CS149, Fall 2020

Project Catapult
▪ Microsoft Research investigation of use of

FPGAs to accelerate datacenter workloads
▪ Demonstrated offload of part of Bing search’s

document ranking logic

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]

Stanford CS149, Fall 2020

Amazon F1
▪ FPGA’s are now available on Amazon cloud services

Stanford CS149, Fall 2020

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP
FPGA/

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Stanford CS149, Fall 2020

Challenges of heterogeneous designs:

(it’s not easy to realize the potential of
specialized, heterogeneous processing)

Stanford CS149, Fall 2020

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task
▪ Challenge to software developer: how to map application

onto a heterogeneous collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose into

components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system

▪ Challenge for hardware designer: what is the right mixture of
resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

- How much chip area should be dedicated to a specific function, like video?

Stanford CS149, Fall 2020

Pitfalls of heterogeneous designs

Consider a two stage graphics pipeline:
Stage 1: rasterize triangles into pixel fragments (using ASIC)
Stage 2: compute color of fragments (on SIMD cores)

Let’s say you under-provision the rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer to achieve throughput T fragments/clock
But really needed throughput of 1.2T to keep the cores busy (should have used 1.2% of chip area for rasterizer)

Now the programmable cores only run at 80% efficiency (99% of chip is idle 20% of the time = same perf as 79% smaller chip!)
So tendency is to be conservative and over-provision fixed-function components (diminishing their advantage)

[Molnar 2010]

Triangle
Rasterizer

Rasterize

Shade

Stanford CS149, Fall 2020

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford CS149, Fall 2020

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2020

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts
may not be desirable even if they run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode,

image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, new instructions for

accelerating AES encryption (AES-NI)
- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before

transferring to memory (likely to see fixed-function HW to reduce overhead of general data
compression/decompression)

Stanford CS149, Fall 2020

Summary: heterogeneous processing for efficiency
▪ Heterogeneous parallel processing: use a mixture of computing resources

that fit mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized

fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple,
general-purpose components

- This is not the case in emerging systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the
programmer

- Current CS research challenge: how to write efficient, portable programs for emerging
heterogeneous architectures?

