
Parallel Computing 
Stanford CS149, Fall 2020

Lecture 16:

Parallel Programming on Graphs + 
How Memory Works 



Stanford CS149, Fall 2020

Today’s topics
▪ Programming abstractions for processing graphs 

- More examples of “domain-specific” programming systems 

▪ Common optimizations when processing graphs 

▪ How memory (DRAM) works 
- Today is a good lecture to talk about memory since graph 

algorithms are often bandwidth bound!



Stanford CS149, Fall 2020

Last time: increasing acceptance of 
domain-specific programming systems
▪ Challenge to programmers: modern computers are parallel, heterogeneous machines 

(HW architects striving for high area and power efficiency)  

▪ Trend: domain-specific programming systems: give up generality in what programs 
can be expressed, in exchange for achieving high productivity and high performance 

▪ “Performance portability” is a key goal: programs should execute efficiently on a 
variety of parallel platforms 

- Good implementations of same program for different systems require different 
data structures, algorithms, and approaches to parallelization — not just 
differences in low-level code generation (optimization is not only a matter of 
generating SSE vs. AVX vs ARM Neon vs. NVIDIA PTX instructions)



Stanford CS149, Fall 2020

Today’s topic: analyzing big graphs
▪ Many modern applications: 

- Web search results, recommender systems, influence 
determination, advertising, anomaly detection, etc. 

▪ Public dataset examples: 
Twitter social graph, Wikipedia term occurrences, IMDB actors, 
Netflix, Amazon communities

Good source of public graphs: 
https://snap.stanford.edu/data/



Stanford CS149, Fall 2020

Thought experiment: if we wanted to design a 
programming system for computing on graphs, 

where might we begin? 

What abstractions do we need? 



Stanford CS149, Fall 2020

Whenever I’m trying to assess a new programming 
system, I ask two questions:

Halide (recall previous class): 

Programmer’s responsibility:

Halide system’s responsibility:

- Describing image processing algorithm as pipeline of operations on images 
- Describing the schedule for executing the pipeline (e.g., “block this loop, 

“parallelize this loop”, “fuse these stages”)

- Implementing the schedule using mechanisms available on the target 
machine (spawning pthreads, allocating temp buffers, emitting vector 
instructions, loop indexing code) 

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc.

“What tasks/problems does the system take off the programmer’s hands? 
(are these problems challenging or tedious enough that I feel the system is 

adding sufficient value for me to want to use it?)” 

“What problems does the system leave as the responsibility for the programmer?” 
(usually because the programmer is better at these tasks)



Stanford CS149, Fall 2020

Programming system design questions:

▪ What are the fundamental operations we want to be easy to 
express and efficient to execute? 

▪ What are the key optimizations used when authoring the best 
implementations of these operations by hand? 
(high-level abstractions provided by a programming system 
should not stand in the way of these optimizations… maybe 
even allow the system to perform them for the programmer)



Stanford CS149, Fall 2020

Example graph computation: Page Rank
Page Rank: iterative graph algorithm 
Graph nodes = web pages 
Graph edges = links between pages

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

Rank of page i
Weighted combination of 

rank of pages that link to it

discount



Stanford CS149, Fall 2020

GraphLab



Stanford CS149, Fall 2020

GraphLab

▪ A system for describing iterative computations on graphs 

▪ Implemented as a C++ library 

▪ Runs on shared memory machines or distributed across clusters 
- GraphLab runtime takes responsibility for scheduling work 

in parallel, partitioning graphs across clusters of machines, 
communication between master, etc.

www.graphlab.org
Low et al. 2010

http://www.graphlab.org
http://www.graphlab.org


Stanford CS149, Fall 2020

GraphLab programs: state

▪ The graph: G = (V, E) 
- Application defines data blocks on each vertex and directed edge 
- Dv = data associated with vertex v 
- Du→v = data associated with directed edge u→v

▪ Read-only global data 
- Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice:  I always first describe program state 

And then describe what operations are available to manipulate this state



Stanford CS149, Fall 2020

GraphLab operations: the “vertex program”
▪ Defines per-vertex operations on the vertex’s local neighborhood  

▪ Neighborhood (aka “scope”) of vertex: 
- The current vertex 

- Adjacent edges 

- Adjacent vertices

= vertex or edge data “in scope” of red vertex 
(graph data that can be accessed when executing 
a vertex program at the current (red) vertex)

current vertex



Stanford CS149, Fall 2020

Simple example: PageRank *

PageRank_vertex_program(vertex i) { 

  // (Gather phase) compute the sum of my neighbors rank 
  double sum = 0; 
  foreach(vertex j : in_neighbors(i)) { 
    sum = sum + j.rank / num_out_neighbors(j); 
  } 

  // (Apply phase) Update my rank (i) 
  i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum; 
}

Programming in GraphLab amounts to defining how to update graph state at each 
vertex. The system takes responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we’ll see on the next slide 

Let alpha = 0.85

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]



Stanford CS149, Fall 2020

GraphLab: data access
▪ The application’s vertex program executes per-vertex 

▪ The vertex program defines: 
- What adjacent edges are inputs to the computation 

- What computation to perform per edge 

- How to update the vertex’s value 

- What adjacent edges are modified by the computation 

- How to update these output edge values 

▪ Note how GraphLab requires the program to tell it all data 
that will be accessed, and whether those accesses are reads or 
writes



Stanford CS149, Fall 2020

PageRank: GraphLab vertex program (C++ code)
struct web_page { 
  std::string pagename; 
  double      pagerank; 
  web_page(): pagerank(0.0) { } 
} 

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type; 

class pagerank_program : public graphlab::ivertex_program { 

public: 
  // we are going to gather over all the in-edges 
  edge_dir_type gather_edges(icontext_type& context, 
                             const vertex_type& vertex) const { 
    return graphlab::IN_EDGES; 
  } 

  // for each in-edge gather the weighted sum of the edge. 
  double gather(icontext_type& context, const vertex_type& vertex, 
               edge_type& edge) const { 
    return edge.source().data().pagerank / edge.source().num_out_edges(); 
  } 
   
  // Use the total rank of adjacent pages to update this page  
  void apply(icontext_type& context, vertex_type& vertex, 
             const gather_type& total) { 
    double newval = total * 0.85 + 0.15; 
    vertex.data().pagerank = newval; 
  } 
   
  // No scatter needed. Return NO_EDGES  
  edge_dir_type scatter_edges(icontext_type& context, 
                              const vertex_type& vertex) const { 
    return graphlab::NO_EDGES; 
  } 
}; 

Define edges to gather 
over in “gather phase”

Graph has record of type 
web_page per vertex, 
and no data on edges

Compute value to 
accumulate for 
each edge

Update vertex rank

PageRank example 
performs no scatter



Stanford CS149, Fall 2020

Running the program

GraphLab runtime provides “engines” that manage scheduling of vertex programs 
engine.signal_all() marks all vertices for execution 

graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync"); 
engine.signal_all(); 
engine.start();

You can think of the GraphLab runtime as a work queue scheduler. 
Invoking a vertex program on a specific vertex is a task that is placed in the work queue. 

So it is reasonable to read the code above as: “place all vertices into the work queue” 

Or as: “foreach vertex” run the vertex program.



Stanford CS149, Fall 2020

Vertex signaling: GraphLab’s mechanism for 
generating new work

Iteratively update all R[i]’s 10 times 
Uses generic “signal” primitive (could also wrap code on previous slide in a for loop) 

struct web_page { 
  std::string pagename; 
  double      pagerank; 
  int         counter; 
  web_page(): pagerank(0.0),counter(0) { } 
} 

// Use the total rank of adjacent pages to update this page  
void apply(icontext_type& context, vertex_type& vertex, 
           const gather_type& total) { 
    double newval = total * 0.85 + 0.15; 
    vertex.data().pagerank = newval; 
    vertex.data().counter++; 
    if (vertex.data().counter < 10) 
       vertex.signal(); 
}

If counter < 10, signal to scheduler to run the 
vertex program on the vertex again at some 
point in the future

Per-vertex “counter”

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]



Stanford CS149, Fall 2020

Signal: general primitive for scheduling work
Parts of graph may converge at different rates 
(iterate PageRank until convergence, but only for vertices that need it)
class pagerank_program: public graphlab::ivertex_program 

private: 
  bool perform_scatter; 

public: 

   // Use the total rank of adjacent pages to update this page  
  void apply(icontext_type& context, vertex_type& vertex, 
             const gather_type& total) { 
    double newval = total * 0.85 + 0.15; 
    double oldval = vertex.data().pagerank;  
    vertex.data().pagerank = newval; 
    perform_scatter = (std::fabs(prevval - newval) > 1E-3); 
  } 
   
  // Scatter now needed if algorithm has not converged  
  edge_dir_type scatter_edges(icontext_type& context, 
                              const vertex_type& vertex) const { 
    if (perform_scatter) return graphlab::OUT_EDGES;  
    else return graphlab::NO_EDGES; 
  } 

   // Make sure surrounding vertices are scheduled 
   void scatter(icontext_type& context, const vertex_type& vertex, 
               edge_type& edge) const { 
    context.signal(edge.target()); 
  } 
};

Schedule update of 
neighbor vertices

Check for convergence

Private variable set during apply phase, 
used during scatter phase



Stanford CS149, Fall 2020

Synchronizing parallel execution
Local neighborhood of vertex (vertex’s “scope”) can be read and written 
to by a vertex program

Programs specify what granularity of atomicity 
they want GraphLab to provide: this 
determines amount of available parallelism 

- “Full”: implementation ensures no other 
execution reads or writes to data in scope of 
v when vertex program for v is running. 

- “Edge”: no other execution reads or writes 
any data in v or in edges adjacent to v 

- “Vertex”: no other execution reads or writes 
to data in v ...

= vertex or edge data in scope of red vertex

current vertex



Stanford CS149, Fall 2020

GraphLab: work scheduling order
▪ GraphLab implements several work scheduling policies 

- Synchronous: update all vertices simultaneously (vertex programs observe no 
updates from programs run on other vertices in same “round”) 

- Round-robin: vertex programs observe most recent updates 
- Dynamic: based on new work created by signal 

- Several implementations: fifo, priority-based,  “splash” ... 

▪ Application developer has flexibility for choosing atomicity 
guarantee and scheduling policy 
- Implication: choice of schedule impacts program’s correctness/output



Stanford CS149, Fall 2020

Summary: GraphLab concepts
▪ Program state: data on graph vertices and edges + globals 

▪ Operations: per-vertex update programs and global reduction 
functions (reductions not discussed today)  
- Simple, intuitive description of work (follows mathematical formulation) 

- Graph restricts data access in vertex program to local neighborhood 

- Asynchronous execution model: application creates work dynamically by 
“signaling vertices” (enable lazy execution, work efficiency on real graphs) 

▪ Choice of scheduler and atomicity implementation 
- In this domain, the order in which nodes are processed can be critical property 

for both performance and quality of result 

- Application responsible for choosing right scheduler for its needs



Stanford CS149, Fall 2020

Ligra 
(efficient data-parallel graph processing 

for shared memory multi-cores)



Stanford CS149, Fall 2020

Ligra
▪ A simple framework for parallel graph operations on shared 

memory multi-core machines 

▪ Motivating example: breadth-first search

[Shun 2013]

parents = {-1, ..., -1} 

// s = src: vertex on frontier with edge to d 
// d = dst: vertex to “update” (just encountered) 
procedure UPDATE(s, d) 
   return compare-and-swap(parents[d], -1, s); 

procedure COND(i) 
   return parents[i] == -1; 

procedure BFS(G, root) 
   parents[root] = root; 
   frontier = {root}; 
   while (size(frontier) != 0) do: 
       frontier = EDGEMAP(G, frontier, UPDATE, COND);  

Semantics of EDGEMAP: 
foreach vertex i in frontier, call UPDATE for all neighboring vertices j 
for which COND(j) is true. Add j to returned set if UPDATE(i, j) returns true

http://www.graphlab.org


Stanford CS149, Fall 2020

Implementing edgemap
▪ Assume vertex subset U (frontier in previous example) is 

represented sparsely: 
- e.g., three vertex subset U of 10 vertex graph G=(E,V): U ⊂ V = {0, 4, 9}

procedure EDGEMAP_SPARSE(G, U, F, C): 

   result = {} 

   parallel foreach v in U do: 

      parallel foreach v2 in out_neighbors(v) do: 

         if (C(v2) == 1 and F(v,v2) == 1) then 

            add v2 to result 

   remove duplicates from result 

   return result; parents = {-1, ..., -1} 

procedure UPDATE(s, d) 
   return compare-and-swap(parents[d], -1, s); 

procedure COND(i) 
   return parents[i] == -1; 

procedure BFS(G, r) 
   parents[r] = r; 
   frontier = {r}; 
   while (size(frontier) != 0) do: 
       frontier = EDGEMAP(G, frontier, UPDATE, COND);  

Cost of EDGEMAP_SPARSE?
O(|U| + sum of outgoing edges from U)

graph set of vertices

condition check on neighbor vertex
update function on neighbor vertex



Stanford CS149, Fall 2020

Visiting every edge on frontier can be wasteful

▪ Each step of BFS, every edge on frontier is visited 
- Frontier can grow quickly for social graphs (few steps to visit all nodes) 
- Most edge visits are wasteful! (they don’t lead to a successful “update”) 

- claimed child: edge points to 
unvisited vertex (useful work) 

- failed child: edge points to vertex 
found in this step via another edge 

- peer: edge points to a vertex that 
was added to frontier in same step 
as current vertex 

- valid parent: edge points to vertex 
found in previous step

[Credit:  Beamer et al. SC12]



Stanford CS149, Fall 2020

Implementing edgemap for dense vertex subsets

▪ Assume vertex subset (frontier in previous example) is 
represented densely with a bitvector: 
- e.g.,  vertex subset U of 10 vertex graph G=(E,V): U ⊂ V = {1,0,0,0,1,0,0,0,0,1}

procedure EDGEMAP_DENSE(G, U, F, C): 

   result = {} 

   parallel for i in {0,...,|V|-1} do: 

      if (C(i) == 1) then: 

         foreach v in in_neighbors(i) do: 

           if v ∈ U and F(v, i) == 1 then: 
              add i to result; 

           if (C(i) == 0) 

              break; 

   return result;

Cost of EDGEMAP_DENSE?
For each unvisited vertex, quit searching as soon as some parent is found 
Could be as low as O(|V|) 
Also no synchronization needed (“gather” results rather than “scatter”)

procedure EDGEMAP_SPARSE(G, U, F, C): 

   result = {} 

   parallel foreach v in U do: 

      parallel foreach v2 in out_neighbors(v) do: 

         if (C(v2) == 1 and F(v,v2) == 1) then 

            add v2 to result 

   remove duplicates from result 

   return result;



Stanford CS149, Fall 2020

Ligra on one slide
▪ Entities: 

- Graphs 
- Vertex subsets (represented sparsely or densely by system) 
- EDGEMAP and VERTEXMAP functions

procedure EDGEMAP(G, U, F, C): 

   if (|U| + sum of out degrees > threshold) 

     return EDGEMAP_DENSE(G, U, F, C); 

   else 

     return EDGEMAP_SPARSE(G, U, F, C);

procedure VERTEXMAP(U, F): 

   result = {} 

   parallel for u ∈ U do: 
      if (F(u) == 1) then: 

         add u to result; 

   return result;

Iterate over all vertices adjacent to 
vertices in set U 
Choose right algorithm for the job

Iterate over all vertices in set U



Stanford CS149, Fall 2020

Page rank in Ligra
r_cur  = {1/|V|, ... 1/|V|}; 

r_next = {0,...,0}; 

diff = {}  

procedure PRUPDATE(s, d): 

   atomicIncrement(&r_next[d], r_cur[s] / vertex_degree(s)); 

procedure PRLOCALCOMPUTE(i): 

  r_next[i] = alpha * r_next[i] + (1 - alpha) / |V|; 

  diff[i] = |r_next[i] - r_cur[i]|; 

  r_cur[i] = 0; 

  return 1; 

procedure COND(i): 

  return 1; 

procedure PAGERANK(G, alpha, eps): 

   frontier = {0, ... , |V|-1} 

   error = HUGE; 

   while (error > eps) do: 

      frontier = EDGEMAP(G, frontier, PRUPDATE, COND); 

      frontier = VERTEXMAP(frontier, PRLOCALCOMPUTE); 

      error = sum of per-vertex diffs  // this is a parallel reduce  

      swap(r_cur, r_next); 

   return err

Question: can you implement the iterate 
until convergence optimization we 
previously discussed in GraphLab? 

(if so, what GraphLab scheduler 
implementation is the result equivalent to?) 



Stanford CS149, Fall 2020

Ligra summary
▪ System abstracts graph operations as data-parallel 

operations over vertices and edges 
- Emphasizes graph traversal (potentially small subset of vertices 

operated on in a data parallel step) 

▪ These basic operations permit a surprisingly wide space of 
graph algorithms: 
- Betweenness centrality 

- Connected components 

- Shortest paths

See Ligra: a Lightweight Framework for Graph Processing 
for Shared Memory [Shun and Blelloch 2013]

http://www.graphlab.org


Stanford CS149, Fall 2020

Ligra
Simple library with many 
useful examples

http://jshun.github.io/ligra/



Stanford CS149, Fall 2020

Elements of good domain-specific 
programming system design



Stanford CS149, Fall 2020

#1: good systems identify the most important cases, 
and provide most benefit in these situations
▪ Structure of code mimics the natural structure of problems in the domain 

- Halide: pixel-wise view of filters: pixel(x,y) computed as expression of 
these input pixel values 

- Graph processing algorithms: per-vertex operations 

▪ Efficient expression: common operations are easy and intuitive to express 

▪ Efficient implementation: the most important optimizations in the 
domain are performed by the system for the programmer 
- My experience: a parallel programming system with “convenient” abstractions 

that precludes best-known implementation strategies will almost always fail



Stanford CS149, Fall 2020

#2: good systems are simple systems

▪ They have a small number of key primitives and operations 
- Ligra: only two operations! (vertexmap and edgemap) 
- GraphLab: run computation per vertex, trigger new work by signaling  

- But GraphLab gets messy with all the scheduling options 
- Halide: a few scheduling primitives for describing loop nests 
- Hadoop: map + reduce 

▪ Allows compiler/runtime to focus on optimizing these primitives 
- Provide parallel implementations, utilize appropriate hardware 

▪ Common question that good architects ask: “do we really need that?” 
(can this concept be reduced to a primitive we already have?) 
- For every domain-specific primitive in the system: there better be a strong 

performance or expressivity justification for its existence



Stanford CS149, Fall 2020

#3: good primitives compose
▪ Composition of primitives allows for wide application scope, even if 

scope is limited to a domain 
- e.g., frameworks discussed today support a wide variety of graph algorithms 

- Halide’s loop ordering + loop interleaving schedule primitives allow for expression 
of wide range of schedules 

▪ Composition often allows optimization to generalizable 
- If system can optimize A and optimize B, then it can optimize programs that 

combine A and B 

▪ Common sign that a feature should not be added (or added in a 
different way): 
- The new feature does not compose with all existing features in the system 

▪ Sign of a good design: 
- System ultimately is used for applications original designers never anticipated



Stanford CS149, Fall 2020

Optimizing graph computations 
(now we are talking about implementation)



Stanford CS149, Fall 2020

Wait a minute…
▪ So far in this lecture, we’ve discussed issues such as parallelism, 

synchronization … 

▪ But you may recall from your assignment that graph processing is 
typically has low arithmetic intensity

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop

VTune profiling results from Asst 4: Memory bandwidth bound!

Walking over edges accesses 
information from “random” 
graph vertices



Stanford CS149, Fall 2020

Two ideas to increase the performance of 
operations on large graphs * 

1. Reorganize graph structure to increase locality 

2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge



Stanford CS149, Fall 2020

Recall: directed graph representation

1
2 3 3 5

2 3
2 4 5 6 

4
1 2 3 6
5

1 5Outgoing Edges
Vertex Id 6

2 4

Vertex Id
Incoming Edges 4 5

1 2
1 3 5 6

3
1 2 5

4
3 6

5
2 3 4

6
3 6

1

2

3

4
5

6



Stanford CS149, Fall 2020

Memory footprint challenge of large graphs
▪ Challenge: cannot fit all edges in memory for large graphs 

- Consider representation of graph from your programming assignment: 
- Each edge represented twice in graph structure (as incoming/outgoing edge) 
- 8 bytes per edge to represent adjacency 

- May also need to store per-edge values (e.g., 4 bytes for a per-edge weight) 
- 1 billion edges (modest): ~12 GB of memory for edge information 
- Algorithm may need multiple copies of per-edge structures (current, prev data, etc.) 

▪ Could employ cluster of machines to store graph in memory 
- Rather than store graph on disk 

▪ Would prefer to process large graphs on a single machine 
- Managing clusters of machines is difficult 
- Partitioning graphs is expensive (also needs a lot of memory) and difficult



Stanford CS149, Fall 2020

“Streaming” graph computations
▪ Graph operations make “random” access to graph data (edges 

adjacent to vertex v may distributed arbitrarily throughout storage) 
- Single pass over graph’s edges might make billions of fine-grained accesses to disk

* By fast storage, in this context I mean DRAM.  However, techniques for streaming from disk into memory 
would also apply to streaming from memory into a processor’s cache

▪ Streaming data access pattern 
- Make large, predictable data accesses to slow storage 

(achieve high bandwidth data transfer) 
- Load data from slow storage into fast storage*, then 

reuse it as much as possible before discarding it 
(achieve high arithmetic intensity) 

- Can we modify the graph data structure so that data 
access requires only a small number of efficient bulk 
loads/stores from slow storage?

Processor

Fast storage 
(low latency, high BW, 

low capacity)

Slow storage 
(high latency, low BW, 

high capacity)

Disk, SSD, etc.



Stanford CS149, Fall 2020

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory) 
- Vertices and only incoming edges to these vertices are stored together in a shard 
- Sort edges in a shard by source vertex id

Notice: to construct subgraph containing vertices in shard 1 and their incoming and 
outgoing edges, only need to load contiguous information from other P-1 shards 

Writes to updated outgoing edges require P-1 bulk writes 

Yellow = data required to process subgraph 
containing vertices in shard 1

GraphChi:  Large-scale graph 
computation on just a PC 
[Kryola et al. 2013]

Shard 1: 
vertices (1-2)

Shard 2: 
vertices (3-4)

Shard 3: 
vertices (5-6)

1

2

3

4
5

6
src dst value src dst value src dst value
1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25 
    2  0.6  

6   2  0.1 

1   3  0.4   
2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9 
    6  0.85  

4   5  0.3   

5   6  0.2  



Stanford CS149, Fall 2020

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory) 
- Vertices and only incoming edges to these vertices are stored together in a shard 
- Sort edges in a shard by source vertex id

1

2

3

4
5

6

Yellow = data required to process subgraph 
containing vertices in shard 2

Shard 1: 
vertices (1-2)

Shard 2: 
vertices (3-4)

Shard 3: 
vertices (5-6)

src dst value src dst value src dst value
1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25 
    2  0.6  

6   2  0.1 

1   3  0.4   
2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9 
    6  0.85  

4   5  0.3   

5   6  0.2  

GraphChi:  Large-scale graph 
computation on just a PC 
[Kryola et al. 2013]



Stanford CS149, Fall 2020

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory) 
- Vertices and only incoming edges to these vertices are stored together in a shard 
- Sort edges in a shard by source vertex id

1

2

3

4
5

6

Observe: due to sorting of incoming edges, iterating over all intervals 
results in contiguous sliding window over the shards 

Shard 1: 
vertices (1-2)

Shard 2: 
vertices (3-4)

Shard 3: 
vertices (5-6)

Yellow = data required to process subgraph 
containing vertices in shard 3

Shard 1: 
vertices (1-2)

Shard 2: 
vertices (3-4)

Shard 3: 
vertices (5-6)

src dst value src dst value src dst value
1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25 
    2  0.6  

6   2  0.1 

1   3  0.4   
2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9 
    6  0.85  

4   5  0.3   

5   6  0.2  

GraphChi:  Large-scale graph 
computation on just a PC 
[Kryola et al. 2013]



Stanford CS149, Fall 2020

Putting it all together: looping over all 
graph edges

For each partition i of vertices: 

- Load shard i  (contains all incoming edges) 

- For each other shard s 

- Load section of s containing data for edges leaving i and entering s 

- Construct subgraph in memory 

- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data for 
next iteration of loop



Stanford CS149, Fall 2020

Performance on a Mac mini (8 GB RAM)

Throughput (edges/sec) remains stable as graph size is increased 
- Desirable property: throughput (edges/sec) largely invariant of dataset size

0 2 4 6 8
x 109

0.5

1

1.5

2

2.5

3x 107

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Pagerank

WebBP

Conn. comp.

Student Version of MATLAB

(a) Performance: SSD

0 2 4 6 8
x 109

4

6

8

10

12

14 x 106

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn. comp.

WebBP

Pagerank

Student Version of MATLAB

(b) Performance : Hard drive

0 

500 

1000 

1500 

2000 

2500 

1 thread 2 threads 4 threads 

Disk IO Graph construction Exec. updates 

(c) Runtime breakdown

Figure 7: (a,b) Computational throughput of GraphChi on the experiment graphs (x-axis is the number of edges)
on SSD and hard drive (higher is better), without selective scheduling, on three different algorithms. The trend-line
is a least-squares fit to the average throughput of the applications. GraphChi performance remains good as the input
graphs grow, demonstrating the scalability of the design. Notice different scales on the y-axis. . (c) Breakdown of the
processing phases for the Connected Components algorithm (3 iterations, uk-union graph; Mac Mini, SSD).

0 

500 

1000 

1500 

2000 

2500 

3000 

Pagerank Conn. components 

Secs 1  disk 2 disks 3 disks 

(a) Multiple hard drives

102 104 106 1080

5

10

15
x 106

Blocksize (bytes)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

SSD

Hard drive

Student Version of MATLAB

(b) Disk block size

101 102 1030

0.5

1

1.5

2x 107

Number of shards (P)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn comp. (SSD)

Pagerank (SSD)

Pagerank (HD)

Conn comp. (HD)

Student Version of MATLAB

(c) Number of shards

Figure 8: (a) Runtime of 3 iterations on the uk-union graph, when data is striped across 2 or 3 hard drives (AMD
server). (b) Impact of the block size used for disk I/O (x-axis is in log-scale). (c) The number of shards has little impact
on performance, unless P is very large.

Next, we studied the bottlenecks of GraphChi. Figure
7c shows the break-down of time used for I/O, graph con-
struction and actual updates with Mac Mini (SSD) when
running the Connected Components algorithm.We disabled
asynchronous I/O for the test, and actual combined running
time is slightly less than shown in the plot. The test was
repeated by using 1, 2 and 4 threads for shard processing
and I/O. Unfortunately, the performance is only slightly
improved by parallel operation. We profiled the execution,
and found out that GraphChi is able to nearly saturate the
SSD with only one CPU, and achieves combined read/write
bandwidth of 350 MB/s. GraphChi’s performance is lim-
ited by the I/O bandwidth. More benefit from parallelism
can be gained if the computation itself is demanding, as
shown in Figure 6. This experiment was made with a mid-
2012 model MacBook Pro with a four-core Intel i7 CPU.

We further analyzed the relative performance of the

disk-based GraphChi to a modified in-memory version of
GraphChi. Table 3 shows that on tasks that are computa-
tionally intensive, such as matrix factorization, the disk
overhead (SSD) is small, while on light tasks such as com-
puting connected components, the total running time can
be over two times longer. In this experiment, we compared
the total time to execute a task, from loading the graph
from disk to writing the results into a file. For the top two
experiments, the live-journal graph was used, and the last
two experiments used the netflix graph. The larger graphs
did not fit into RAM.

Evolving Graphs: We evaluated the performance of
GraphChi on a constantly growing graph. We inserted
edges from the twitter-2010 graph, with rates of 100K and
200K edges in second, while simultaneously running Pager-
ank. Edges were loaded from the hard drive, GraphChi
operated on the SSD. Figure 9a shows the throughput over

13



Stanford CS149, Fall 2020

Graph compression
▪ Recall: graph operations are often bandwidth bound 

▪ Implication: using additional CPU instructions to reduce BW 
requirements can benefit overall performance (the processor 
would be waiting on memory anyway, so use it to decompress 
data!) 

▪ Idea: store graph compressed in memory, decompress on-the-
fly when operation wants to read data



Stanford CS149, Fall 2020

Compressing an edge list
1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000Outgoing Edges

Vertex Id

1. Sort edges for each vertex 

2. Compute differences 

3. Group into sections requiring same number of bytes 

4. Encode deltas

32

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

0 1  4 20  971    9   14    1    5  98070 100000  75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

-27 1  4 20  971    9   14    1    5  98070 100000  75000
5  6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2 bytes 1 byte 4 bytes1 byte

1-byte group header

2 bits: encoding width (1, 2, 4 bytes)
6 bits: number of edges in group

Compressed encoding: 26 bytes

[ONE_BYTE, 4], -27, 1, 4, 20

[TWO_BYTE, 1], 971

[ONE_BYTE, 4], 9, 14, 1, 5

[FOUR_BYTE, 3], 98070, 100000, 75000

(5 bytes)

(3 bytes)

(5 bytes)

(13 bytes)

Uncompressed  encoding: 12 edges x 4 bytes = 48 bytes 

relative to 
vertex index



Stanford CS149, Fall 2020

Performance impact of graph compression

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on a single thread

original Ligra
byte

byte-RLE
nibble

Figure 6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left) and on 40 cores with hyper-
threading (center). Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading (right).

Figure 7: Peak memory usage of graph algorithms on com-LJ (left), com-Orkut (center) and nlpkkt240 (right).

scan over each vertex’s edges, and is done in parallel. We also plot the average performance
per application of Ligra+ with each encoding scheme relative to Ligra in Figure 6 (left
and center). We see that sequentially, Ligra+ is slower on average than Ligra for all of
the applications except PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is
faster on all applications. In parallel, Ligra+ using nibble codes is still generally slower than
Ligra due to the high overhead of decoding, but not by as much as on a single thread (see
Figure 6). Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is
generally faster than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the e↵ect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE codes

is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In parallel,
Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs with
better compression (e.g. nlpkkt240 and uk-union) tend to have better performance in Ligra+.
For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices tend to have
higher degrees and neighbors no longer fit on a cache line, making the reduced memory
footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra by about 3%,
13% and 73% on average when using byte-RLE, byte, and nibble codes, respectively.

We plot the average parallel self-relative speedups (T1/T40) over all inputs of each of
the coding schemes per application in Figure 6 (right). Both Ligra and Ligra+ achieve
good speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the
overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.
Memory Usage. In Figure 7, we plot the peak memory usage of the applications using Ligra

 0.8

 1

 1.2

 1.4

 1.6

 1.8

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

Figure 6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left) and on 40 cores with hyper-
threading (center). Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading (right).

Figure 7: Peak memory usage of graph algorithms on com-LJ (left), com-Orkut (center) and nlpkkt240 (right).

scan over each vertex’s edges, and is done in parallel. We also plot the average performance
per application of Ligra+ with each encoding scheme relative to Ligra in Figure 6 (left
and center). We see that sequentially, Ligra+ is slower on average than Ligra for all of
the applications except PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is
faster on all applications. In parallel, Ligra+ using nibble codes is still generally slower than
Ligra due to the high overhead of decoding, but not by as much as on a single thread (see
Figure 6). Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is
generally faster than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the e↵ect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE codes

is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In parallel,
Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs with
better compression (e.g. nlpkkt240 and uk-union) tend to have better performance in Ligra+.
For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices tend to have
higher degrees and neighbors no longer fit on a cache line, making the reduced memory
footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra by about 3%,
13% and 73% on average when using byte-RLE, byte, and nibble codes, respectively.

We plot the average parallel self-relative speedups (T1/T40) over all inputs of each of
the coding schemes per application in Figure 6 (right). Both Ligra and Ligra+ achieve
good speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the
overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.
Memory Usage. In Figure 7, we plot the peak memory usage of the applications using Ligra

Re
la

tiv
e r

un
tim

e

Running time on 40 cores 
(relative to no compression)

Running time on one core 
(relative to no compression)

Re
la

tiv
e r

un
tim

e

▪ Benefit of graph compression increases with higher core count, since 
computation is increasingly bandwidth bound 

▪ Performance improves even if graphs already fit in memory 
- Added benefit is that compression enables larger graphs to fit in memory 

* Different data points on graphs are different compression schemes 
(byte-RLE is the scheme on the previous slide)

[Shun et al. DDC 2015]



Stanford CS149, Fall 2020

Summary
▪ Analyzing large graphs is a workload of high interest 

▪ High performance execution requires 
- Parallelism (complexity emerges from need to synchronize updates to 

shared vertices or edges) 

- Locality optimizations (restructure graph for efficient I/O) 

- Graph compression (reduce amount memory BW or disk I/O) 

▪ Graph-processing frameworks handle many of these details, 
while presenting the application programmer with domain-
specific abstractions that make it easy to express graph 
analysis operations



Stanford CS149, Fall 2020

How memory works



Stanford CS149, Fall 2020

Memory bandwidth limits

▪ So far in this course, we’ve stressed the need for reducing 
bandwidth costs…



Stanford CS149, Fall 2020

Well written programs exploit locality to avoid 
redundant data transfers between CPU and memory 
(Key idea: place frequently accessed data in caches/buffers near processor)

Core

Core

Core

Core

Memory

L1

L1

L1

L1

L2

▪ Modern processors have high-bandwidth (and low latency) access to on-chip local storage 
- Computations featuring data access locality can reuse data in this storage 

▪ Common software optimization technique: reorder computation so that cached data is accessed 
many times before it is evicted (“blocking”, “loop fusion”, etc.) 

▪ Performance-aware programmers go to great effort to improve the cache locality of programs 
- What are good examples from this class?



Stanford CS149, Fall 2020

Example 1: restructuring loops for locality
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”



Stanford CS149, Fall 2020

Example 2: restructuring loops for locality

var lines = spark.textFile(“hdfs://15418log.txt”); 
var lower = lines.map(_.toLower()); 
var mobileViews = lower.filter(x => isMobileClient(x)); 
var howMany = mobileViews.count();

int count = 0; 
while (inputFile.eof()) { 
   string line = inputFile.readLine(); 
   string lower = line.toLower; 
   if (isMobileClient(lower)) 
     count++; 
}

Actual execution order of computation for the above lineage is 
similar to this… 

Recall Apache Spark: 
Programs are sequences of operations on collections (called RDDs)



Stanford CS149, Fall 2020

Example 3: restructuring loops for locality

int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.0/3, 1.0/3, 1.0/3}; 

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) { 

  // blur region of image horizontally 
  for (int j2=0; j2<CHUNK_SIZE+2; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  // blur tmp_buf vertically 
  for (int j2=0; j2<CHUNK_SIZE; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; 
      output[(j+j2)*WIDTH + i] = tmp; 
    } 
}

int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.0/3, 1.0/3, 1.0/3}; 

// blur image horizontally 
for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

// blur tmp_buf vertically 
for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

Wx(CHUNK_SIZE+2)

Program 1 Program 2



Stanford CS149, Fall 2020

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory 
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  

Now, we wish to reduce communication to reduce energy consumption 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.) 
- iPhone 11 battery: ~12 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm


Stanford CS149, Fall 2020

Moving data is costly!
Data movement limits performance 
Many processing elements… 

= higher overall rate of memory requests 
= need for more memory bandwidth 
    (result: bandwidth-limited execution) 

Data movement has high energy cost 
~ 0.9 pJ for a 32-bit floating-point math op * 
~ 5 pJ for a local SRAM (on chip) data access  
~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption



Stanford CS149, Fall 2020

Accessing DRAM 
(a basic tutorial on how DRAM works)



Stanford CS149, Fall 2020

The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller 

sends commands to DRAM

issues loads and store instructions



Stanford CS149, Fall 2020

DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”  

2 Kbits per row

(Recall: a capacitor stores charge)  

(to memory controller…)



Stanford CS149, Fall 2020

DRAM operation  (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer 
row

1. Precharge: ready bit lines (~10 ns) 

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in 
units of memory clocks: 
DDR3-1600 (Kayvon’s laptop)

(to memory controller…)



Stanford CS149, Fall 2020

Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps

2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)



Stanford CS149, Fall 2020

DRAM access latency is not fixed
▪ Best case latency: read from active row 

- Column access time (CAS)  

▪ Worst case latency: bit lines not ready, read from new row 
- Precharge (PRE) + row activate (RAS) + column access (CAS)

▪ Question 1: when to execute precharge? 
- After each column access? 
- Only when new row is accessed? 

▪ Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer 
contents back into DRAM array (read was destructive) 



Stanford CS149, Fall 2020

Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time 
(red = data pins busy) 

This is bad since they are the scarcest resource!



Stanford CS149, Fall 2020

DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers 

Each DRAM command describes bulk transfer 
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2



Stanford CS149, Fall 2020

DRAM chip consists of multiple banks
▪ All banks share same pins (only one transfer at a time) 
▪ Banks allow for pipelining of memory requests 

- Precharge/activate rows/send column address to one bank while transferring data from another 
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time



Stanford CS149, Fall 2020

Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus) 
Note: DIMM appears as a single, higher capacity, wider interface DRAM 
module to the memory controller.  Higher aggregate bandwidth, but 
minimum transfer granularity is now 64 bits.

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0



Stanford CS149, Fall 2020

Reading one 64-byte (512 bit) cache line 
(the wrong way)

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip  
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0



Stanford CS149, Fall 2020

Reading one 64-byte (512 bit) cache line 
(the wrong way)

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip 
Bytes sent consecutively over same pins

Read bank B, row R, column 0



Stanford CS149, Fall 2020

Reading one 64-byte (512 bit) cache line 
(the wrong way)

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip 
Bytes sent consecutively over same pins



Stanford CS149, Fall 2020

Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column 
Here: physical addresses are interleaved across DRAM chips at byte granularity  
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0



Stanford CS149, Fall 2020

Memory controller

CPU

64 bit 
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column * 
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here



Stanford CS149, Fall 2020

Memory controller is a memory request scheduler
▪ Receives load/store requests from LLC 
▪ Conflicting scheduling goals 

- Maximize throughput, minimize latency, minimize energy consumption 
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve) 

- Service requests to currently open row first (maximize row locality) 
- Service requests to other rows in FIFO order 

- Controller may coalesce multiple small requests into large contiguous requests (to take 
advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue



Stanford CS149, Fall 2020

Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

▪ Increase throughput by adding memory channels (effectively widen bus) 
▪ Below: each channel can issue independent commands 
- Different row/column is read in each channel 

- Simpler setup: use single controller to drive same command to multiple channels



Stanford CS149, Fall 2020

Example: DDR4 memory

DDR4 2400 
- 64-bit memory bus  x  1.2GHz  x  2 transfers per clock* = 19.2GB/s per channel 
- 2 channels = 38.4 GB/sec 
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor   (in Myth cluster)
Memory system details from Intel’s site: 

* DDR stands for “double data rate”

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html



Stanford CS149, Fall 2020

DRAM summary
▪ DRAM access latency can depend on many low-level factors 

- Discussed today: 

- State of DRAM chip: row hit/miss? is recharge necessary? 

- Buffering/reordering of requests in memory controller 

▪ Significant amount of complexity in a modern multi-core 
processor has moved into the design of memory controller 
- Responsible for scheduling ten’s to hundreds of outstanding memory requests 

- Responsible for mapping physical addresses to the geometry of DRAMs 

- Area of active computer architecture research



Stanford CS149, Fall 2020

Modern architecture challenge: 
improving memory performance: 

Decrease distance data must move by 
locating memory closer to processors

(enables shorter, but wider interfaces)



Stanford CS149, Fall 2020

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips 
-DRAMs connected via through-silicon-vias (TSVs) that run through the chips 
- TSVs provide highly parallel connection between logic layer and DRAMs  
-Base layer of stack “logic layer” is memory controller, manages requests from processor 
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies: 
Micron/Intel Hybrid Memory Cube (HBC) 
High-bandwidth memory (HBM) - 1024 bit interface to stackHBM vs GDDR5: 

HBM shortens your information commute 

HBM blasts through existing performance limitations

MOORE’S INSIGHT

INDUSTRY PROBLEM #1

High-Bandwidth Memory (HBM)
REINVENTING MEMORY TECHNOLOGY

HBM vs GDDR5: 
Better bandwidth per watt 1

HBM vs GDDR5: 
Massive space savings

HBM vs GDDR5: 
Compare side by side

GDDR5 HBM

DRAM

GDDR5 HBMPer Package
32-bit 1024-bitBus Width

Up to 1750MHz (7GBps) Up to 500MHz (1GBps)Clock Speed
Up to 28GB/s per chip   >100GB/s per stack     Bandwidth

1.5V 1.3VVoltage

TSV

IFBGA Roll

Iu-Bump

DRAM Core die

DRAM Core die

DRAM Core die

DRAM Core die

Base die

Substrate

Package

HBM: AMD and JEDEC establish a new industry standard

AMD’s history of pioneering innovations and open technologies sets 
industry standards and enables the entire industry to push the 
boundaries of what is possible.

Mantle
GDDR
Wake-on-LAN/Magic Packet
DisplayPortTM Adaptive-Sync

x86-64
Integrated Memory Controllers
On-die GPUs
Consumer Multicore CPUs

Design and implementation
AMD

Industry standards
JEDEC

ICs/PHY
SK hynix

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,and combinations thereof are trademarks of Advanced Micro Devices, Inc. 

1. Testing conducted by AMD engineering on the AMD Radeon™ R9 290X GPU vs. an HBM-based device. Data obtained through isolated direct measurement 
of GDDR5 and HBM power delivery rails at full memory utilization. Power e!ciency calculated as GB/s of bandwidth delivered per watt of power consumed. 
AMD Radeon™ R9 290X (10.66 GB/s bandwidth per watt) and HBM-based device (35+ GB/s bandwidth per watt), AMD FX-8350, Gigabyte GA-990FX-UD5, 8GB 
DDR3-1866, Windows 8.1 x64 Professional, AMD Catalyst™ 15.20 Beta. HBM-1

2. Measurements conducted by AMD Engineering on 1GB GDDR5 (4x256MB ICs) @ 672mm2 vs. 1zGB HBM (1x4-Hi) @ 35mm2. HBM-2

GDDR5 can’t keep up with GPU performance growth
GDDR5's rising power consumption may soon be 
great enough to actively stall the growth of 
graphics performance.

DRAM
SSD

TRUE
IVR

OPTICS

Stacked Memory 

CPU/GPUSilicon Die

Off Chip Memory

0 10 20 30 40 50

GDDR5 10.66

HBM

GB/s of Bandwidth Per Watt

35+

Areal, to scale

94% less surface area2

1GB GDDR5

28mm

24
m

m

1GB HBM

7mm

5m
m

Revolutionary HBM breaks the processing bottleneck
HBM is a new type of memory chip with low power consumption and ultra-wide 
communication lanes. It uses vertically stacked memory chips interconnected by microscopic 
wires called "through-silicon vias," or TSVs.

  HBM DRAM Die

  HBM DRAM Die

  HBM DRAM Die

  HBM DRAM Die

GPU/CPU/Soc DiePHY

TSV

PHY  Logic Die

  Interposer

Package Substrate

Microbump

110mm

90
mm

Package 
Substrate

Interposer

Logic Die

INDUSTRY PROBLEM #2
GDDR5 limits form factors
A large number of GDDR5 chips are required to 
reach high bandwidth. Larger voltage circuitry is 
also required. This determines the size of a 
high-performance product.

INDUSTRY PROBLEM #3
On-chip integration not ideal for everything
Technologies like NAND, DRAM and Optics would 
benefit from on-chip integration, but aren't 
technologically compatible.

TIME

TO
TA

L P
OW

ER

PE
RF

OR
MA

NC
E

Memory Power              PC Power              GPU Performance

1.4x Trend 

Coming 
Soon!

Over the history of computing hardware, the number of transistors in a dense integrated circuit 
has doubled approximately every two years. 

(Thus) it may prove to be more economical to build large systems out of larger functions, which 
are separately packaged and interconnected… to design and construct a considerable variety of 
equipment both rapidly and economically.

*AMD internal estimates, for illustrative purposes only

Source: "Cramming more components onto integrated circuits," Gordon E. Moore, Fairchild Semiconductor, 1965



Stanford CS149, Fall 2020

GPUs are adopting HBM technologies

AMD Radeon Fury GPU (2015) 
4096-bit interface: 4 HBM chips x 1024 bit interface per chip 
512 GB/sec BW

NVIDIA P100 GPU (2016) 
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 
720 GB/sec peak BW 
4 x 4 GB = 16 GB capacity 



Stanford CS149, Fall 2020

Xeon Phi (Knights Landing) MCDRAM 
▪ 16 GB in package stacked DRAM 
▪ Can be treated as a 16 GB last level cache 
▪ Or as a 16 GB separate address space (“flat mode”) 
▪ Intel’s claims: 

- ~ same latency at DDR4 
- ~5x bandwidth of DDR4 
- ~5x less energy cost per bit transferred  

// allocate buffer in MCDRAM (“high bandwidth” memory malloc) 
float* foo = hbw_malloc(sizeof(float) * 1024);



Stanford CS149, Fall 2020

Summary: the memory bottleneck is being 
addressed in many ways
▪ By the application programmer 

- Schedule computation to maximize locality (minimize required data movement) 

▪ By new hardware architectures 
- Intelligent DRAM request scheduling 
- Bringing data closer to processor (deep cache hierarchies, 3D stacking) 
- Increase bandwidth (wider memory systems) 
- Ongoing research in locating limited forms of computation “in” or near memory 
- Ongoing research in hardware accelerated compression (not discussed today) 

▪ General principles 
- Locate data storage near processor 
- Move computation to data storage 
- Data compression (trade-off extra computation for less data transfer)


