Lecture 16:

Parallel Programming on Graphs +
How Memory Works

Parallel Computing
Stanford (5149, Fall 2020

Today’s topics

m Programming abstractions for processing graphs
- More examples of “domain-specific” programming systems

m Common optimizations when processing graphs

m How memory (DRAM) works

- Today is a good lecture to talk about memory since graph
algorithms are often bandwidth bound!

Stanford (5149, Fall 2020

Last time: increasing acceptance of
domain-specific programming systems

B (hallenge to programmers: modern computers are parallel, heterogeneous machines
(HW architects striving for high area and power efficiency)

B Trend: domain-specific programming systems: give up generality in what programs
can be expressed, in exchange for achieving high productivity and high performance

B “Performance portability” is a key goal: programs should execute efficientlyona
variety of parallel platforms

- Good implementations of same program for different systems require different
data structures, algorithms, and approaches to parallelization — not just
differences in low-level code generation (optimization is not only a matter of
generating SSE vs. AVX vs ARM Neon vs. NVIDIA PTX instructions)

Stanford (5149, Fall 2020

Today’s topic: analyzing big graphs

m Many modern applications:

- Web search results, recommender systems, influence
determination, advertising, anomaly detection, etc.

® Public dataset examples:
Twitter social graph, Wikipedia term occurrences, IMDB actors, . ©

° o 0 ™ - @)
Netflix, Amazon communities o % ed o 50
W y . { e - ¥
@ @ _o \ N
0° o
3 @ @ P o o ® 2 & @ °
o P g @ ol © Ye O g
0 -' .)) g &
* o | o @ O @ .iﬁofﬂ&*?@(;
8 . "~ 08 % 0 S0 809,
o @ o o ¥ ® 5 =
o - o ©¢ © @c
5 O 26
: € 2@
Good source of public graphs: s L e q
https://snap.stanford.edu/data/ N -
& 2

Stanford (5149, Fall 2020

Thought experiment: if we wanted to design a
programming system for computing on graphs,
where might we begin?

What abstractions do we need?

Stanford (5149, Fa

112020

Whenever I'm trying to assess a new programming
system, | ask two questions:

“What tasks/problems does the system take off the programmer’s hands?
(are these problems challenging or tedious enough that | feel the system is
adding sufficient value for me to want to use it?)”

“What problems does the system leave as the responsibility for the programmer?”
(usually because the programmer is better at these tasks)

Halide (recall previous class):

Programmer’s responsibility:
- Describing image processing algorithm as pipeline of operations on images
- Describing the schedule for executing the pipeline (e.g., “block this loop,

I/}

“parallelize this loop’, “fuse these stages”)

Halide system’s responsibility:
- Implementing the schedule using mechanisms available on the target

machine (spawning pthreads, allocating temp buffers, emitting vector
instructions, loop indexing code)

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc. Stanford (5149 Fall 2020

Programming system design questions:

m What are the fundamental operations we want to be easy to
express and efficient to execute?

m What are the key optimizations used when authoring the best
implementations of these operations by hand?

(high-level abstractions provided by a programming system
should not stand in the way of these optimizations... maybe
even allow the system to perform them for the programmer)

Stanford (5149, Fall 2020

Example graph computation: Page Rank

Page Rank: iterative graph algorithm
Graph nodes = web pages
Graph edges = links between pages

discount

1—a RJj

Rli] = N - Z Outlinks|7|

[7 linksto 1

Weighted combination of

Rank of page rank of pages that link to it

Stanford (5149, Fall 2020

Graphlab

Stanford (5149, Fall 2020

. \

Low et al. 2010
(org o el b\ www.graphlab.org

Graphlab

m Asystem for describing iterative computations on graphs
® |mplemented as a (++ library
B Runs on shared memory machines or distributed across clusters

- GraphLab runtime takes responsibility for scheduling work
in parallel, partitioning graphs across clusters of machines,
communication between master, etc.

Stanford (5149, Fall 2020

http://www.graphlab.org
http://www.graphlab.org

Graphlab programs: state

m The graph: G=(V, E)
- Application defines data blocks on each vertex and directed edge
= D, =data associated with vertex v

- D,-,=data associated with directed edge u—v

m Read-only global data

- (Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice: | always first describe program state

And then describe what operations are available to manipulate this state

Stanford (5149, Fall 2020

Graphlab operations: the “vertex program”

m Defines per-vertex operations on the vertex’s local neighborhood

m Neighborhood (aka “scope”) of vertex:

current vertex
- The current vertex

- Adjacent edges

- Adjacent vertices ® =)

O
&) &

= vertex or edge data “in scope” of red vertex
(graph data that can be accessed when executing
a vertex program at the current (red) vertex)

Stanford (5149, Fall 2020

Simple example: PageRank *

e Rl
R[i] = - a Z ~Outlinks|j]

7 linksto s

PageRank _vertex_program(vertex i) {

double sum = 0;
foreach(vertex j : in_neighbors(i)) {
sum = sum + j.rank / num_out neighbors(j);

} / Let alpha =0.85

i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;
}

Programming in GraphLab amounts to defining how to update graph state at each
vertex. The system takes responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C(++, as we'll see on the next slide Stanford CS149, Fall 2020

Graphlab: data access

m The application’s vertex program executes per-vertex
m The vertex program defines:

- What adjacent edges are inputs to the computation

- What computation to perform per edge

- How to update the vertex’s value

- What adjacent edges are modified by the computation
- How to update these output edge values

m Note how GraphLab requires the program to tell it all data

that will be accessed, and whether those accesses are reads or
writes

Stanford (5149, Fall 2020

PageRank: GraphLab vertex program (C++ code)

struct web_page {
std: :string pagename;
double pagerank;
web_page(): pagerank(0.0) { }

} /A
Graph has record of type

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type; :[7 web_page per vertex
— ’

class pagerank_program : public graphlab::ivertex_program { and no data on edges
public:

// we are going to gather over all the in-edges

edge_dir_type gather_edges(icontext_type& context, Define edges to gather

const vertex type& vertex) const .
graphlab: : IN_EDGES ; -) { over in “gather phase”

}

// for each in-edge gather the weighted sum of the edge. Compute value to
double gather(icontext_ type& context, const vertex_ type& vertex,
edge_type& edge) const { accumulate for

edge.source().data().pagerank / edge.source().num out_edges(); each edge
}
// Use the total rank of adjacent pages to update this page
void apply(icontext type& context, vertex type& vertex, Update vertex rank

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;

}
// No scatter needed. Return NO_EDGES
edge _dir_type scatter_edges(icontext_ type& context, PageRank example
const vertex_ type& vertex) const { performs no scatter
graphlab: :NO EDGES;
}
}s

Stanford (5149, Fall 2020

Running the program

graphlab: :omni_engine<pagerank program> engine(dc, graph,);
engine.signal all();
engine.start();

GraphLab runtime provides “engines” that manage scheduling of vertex programs
engine.signal all() marks all vertices for execution

You can think of the GraphLab runtime as a work queue scheduler.
Invoking a vertex program on a specific vertex is a task that is placed in the work queue.

So itis reasonable to read the code above as: “place all vertices into the work queue”

Or as: “foreach vertex” run the vertex program.

Stanford (5149, Fall 2020

Vertex signaling: GraphLab’s mechanism for
generating new work

 l-a R[j)
R|1] = N ¢ Z Outlinks|[/]

7 linksto 1

Iteratively update all R[i]’s 10 times
Uses generic “signal” primitive (could also wrap code on previous slide in a for loop)

struct web_page {

std::string pagename; Per-vertex “counter”
int counter;

web_page(): pagerank(0.0),counter(0) { }
}

// Use the total rank of adjacent pages to update this page
void apply(icontext type& context, vertex type& vertex,
const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;

vertex.data().counter++; If counter < 10, signal to scheduler to run the
if (vertex.data().counter < 10) .
vertex program on the vertex again at some

vertex.signal(); ..
point in the future

Stanford (5149, Fall 2020

Signal: general primitive for scheduling work

Parts of graph may converge at different rates
(iterate PageRank until convergence, but only for vertices that need it)

class pagerank_program: public graphlab::ivertex program

private:
bool perform_scatter;

]E Private variable set during apply phase,

used during scatter phase
public:

// Use the total rank of adjacent pages to update this page
void apply(icontext type& context, vertex type& vertex,
const gather_type& total) {
double newval total * 0.85 + 0.15;
double oldval = vertex.data().pagerank;
vertex.data().pagerank = newval;

perform_scatter = (std::fabs(prevval - newval) > 1E-3); :[7 Checkforconvergence

}

// Scatter now needed if algorithm has not converged
edge_dir_type scatter_edges(icontext_type& context,
const vertex_type& vertex) const {
(perform_scatter) graphlab: :OUT_EDGES;
graphlab: :NO_EDGES;

}
// Make sure surrounding vertices are scheduled
void scatter(icontext_type& context, const vertex type& vertex, Schedule update of
edge type& edge) const { . .
context.signal(edge.target()); neighbor vertices
}

}s

Stanford (5149, Fall 2020

Synchronizing parallel execution

Local neighborhood of vertex (vertex’s “scope”) can be read and written
to by a vertex program

O

current vertex

= vertex or edge data in scope of red vertex

Programs specify what granularity of atomicity
they want GraphLab to provide: this
determines amount of available parallelism

— “Full”: implementation ensures no other
execution reads or writes to data in scope of

v when vertex program for v is running.

— “Edge”: no other execution reads or writes
any data in v or in edges adjacent to v

— “Vertex": no other execution reads or writes

todatainv...

Stanford (5149, Fall 2020

GraphLab: work scheduling order

m GraphLab implements several work scheduling policies

- Synchronous: update all vertices simultaneously (vertex programs observe no
updates from programs run on other vertices in same “round”)

= Round-robin: vertex programs observe most recent updates
- Dynamic: based on new work created by signal
- Several implementations: fifo, priority-based, “splash” ...

m Application developer has flexibility for choosing atomicity
guarantee and scheduling policy

- Implication: choice of schedule impacts program’s correctness/output

Stanford (5149, Fall 2020

Summary: GraphLab concepts

m Program state: data on graph vertices and edges + globals

m (Qperations: per-vertex update programs and global reduction
functions (reductions not discussed today)
- Simple, intuitive description of work (follows mathematical formulation)

- Graph restricts data access in vertex program to local neighborhood

- Asynchronous execution model: application creates work dynamically by
“signaling vertices” (enable lazy execution, work efficiency on real graphs)

m (Choice of scheduler and atomicity implementation

= In this domain, the order in which nodes are processed can be critical property
for both performance and quality of result

- Application responsible for choosing right scheduler for its needs

Stanford (5149, Fall 2020

Ligra
(efficient data-parallel graph processing
for shared memory multi-cores)

[Shun 2013]

Ligra

m Asimple framework for parallel graph operations on shared
memory multi-core machines

m Motivating example: breadth-first search

parents = {-1, ..., -1}

// s = src: vertex on frontier with edge to d

// d = dst: vertex to “update” (just encountered)
procedure UPDATE(s, d)

return compare-and-swap(parents[d], -1, s);

procedure COND(1i)
return parents[i] == -1;

procedure BFS(G, root)
parents[root] = root;
frontier = {root};
while (size(frontier) != 0) do:
frontier = EDGEMAP(G, frontier, UPDATE, COND);

\ Semantics of EDGEMAP:

foreach vertex i in frontier, call UPDATE for all neighboring vertices |
for which COND(j) is true. Add j to returned set if UPDATE(, j) returns true

Stanford (5149, Fall 2020

http://www.graphlab.org

Implementing edgemap

B Assume vertex subset U (frontier in previous example) is

represented sparsely:
- e.g., three vertex subset U of 10 vertex graph G=(E,V): U c V ={0, 4, 9}

“/*Ph set of vertices
procedure EDGEMAP_SPARSE(G, U, F, C):
result = {} %ondition check on neighbor vertex

parallel foreach v in U do: update function on neighbor vertex
parallel foreach v2 in out_neighbors(v) do:

if (C(v2) == 1 and F(v,v2) == 1) then
add v2 to result
remove duplicates from result
return result; PETEES = =ty coop =2l

procedure UPDATE(s, d)
return compare-and-swap(parents[d], -1, s);

procedure COND(1i)

Cost of EDGEMAP_SPARSE? return parents[i] == -1;
0(|U] + sum of outgoing edges from U) ~ Procedure 3F2(S,)

parents[r] = r;
frontier = {r};
while (size(frontier) != 0) do:
frontier = EDGEMAP(G, frontier, UPDATE, COND);

Stanford (5149, Fall 2020

Visiting every edge on frontier can be wasteful

m Each step of BFS, every edge on frontier is visited

- Frontier can grow quickly for social graphs (few steps to visit all nodes)
- Most edge visits are wasteful! (they don't lead to a successful “update”)

claimed child: edge points to 3.0Bf- ‘ ' ' ' : - -
unvisited vertex (useful work) Claimed Child
, : : 2.5B} Failed Child |
failed child: edge points to vertex
. . . .1 Peer
found in this step via another edge 5 0Bl)
v B Valid Parent
peer: edge points to avertexthat S
o o =
was added to frontier in same step =) 1.5Bf
as current vertex -
1.0B}
valid parent: edge points to vertex
found in previous step 058}
0 | | |
0 1 2 3 4 5 6

[Credit: Beamer et al. SC12]
Stanford (5149, Fall 2020

Implementing edgemap for dense vertex subsets

m Assume vertex subset (frontier in previous example) is
represented densely with a bitvector:

- e.g., vertex subset U of 10 vertex graph G=(E,V):U c V={1,0,0,0,1,0,0,0,0,1}

procedure EDGEMAP_SPARSE(G, U, F, C): procedure EDGEMAP_DENSE(G, U, F, C):

result = {} result = {}
parallel foreach v in U do: parallel for i in {@,...,]|V]|-1} do:

parallel foreach v2 in out_neighbors(v) do: if (C(i) == 1) then:

if (C(v2) == 1 and F(v,v2) == 1) then foreach v in in_neighbors(i) do:
add v2 to result if v € U and F(v, i) == 1 then:
remove duplicates from result add i to result;
return result; if (C(i) == 0)
break;

return result;

Cost of EDGEMAP_DENSE?
For each unvisited vertex, quit searching as soon as some parent is found

Could be as low as O(|V/|)
Also no synchronization needed (“gather” results rather than “scatter”)

Stanford (5149, Fall 2020

Ligra on one slide

m Entities:
- Graphs
- Vertex subsets (represented sparsely or densely by system)
- EDGEMAP and VERTEXMAP functions

procedure EDGEMAP(G, U, F, C):

if (|U| + sum of out degrees > threshold) Iterate over all vertices adjacent to
return EDGEMAP _DENSE(G, U, F, C); vertices in setU
else Choose right algorithm for the job

return EDGEMAP_SPARSE(G, U, F, C);

procedure VERTEXMAP(U, F):

result = {}

parallel for u € U do: .
, [terate over all vertices in set U
if (F(u) == 1) then:

add u to result;
return result;

Stanford (5149, Fall 2020

Page rank in Ligra

r_cur = {1/|V]|, ... 1/]|V]|};
r_next = {0,...,0};
diff = {}

procedure PRUPDATE(s, d):
atomicIncrement(&r_next[d], r_cur[s] / vertex_degree(s));

procedure PRLOCALCOMPUTE(1i):
r_next[i] = alpha * r_next[i] + (1 - alpha) / |V]|;
diff[i] = |r_next[i] - r_cur[i]];

r_cur[i] = ©; Question: can you implement the iterate
return 1; . o o .
until convergence optimization we
procedure COND(i): previously discussed in GraphLab?
return 1;

orocedure PAGERANK(G, alpha, eps): flf s0, what Gr.apITLab scheduler |
frontier = {0, ... , |V|-1} implementation is the result equivalent to?)

error = HUGE;
while (error > eps) do:
frontier = EDGEMAP(G, frontier, PRUPDATE, COND);
frontier = VERTEXMAP(frontier, PRLOCALCOMPUTE);
error = sum of per-vertex diffs // this is a parallel reduce
swap(r_cur, r_next);
return err

Stanford (5149, Fall 2020

Ligra summary

m System abstracts graph operations as data-parallel
operations over vertices and edges

- Emphasizes graph traversal (potentially small subset of vertices
operated on in a data parallel step)

B These basic operations permit a surprisingly wide space of
graph algorithms:
- Betweenness centrality
- Connected components
- Shortest paths

See Ligra: a Lightweight Framework for Graph Processing
for Shared Memory [Shun and Blelloch 2013]

Stanford (5149, Fall 2020

http://www.graphlab.org

Ligra Download GitHub

Ligra e

Getting Started

Examples

))) Tutorial: BFS Implementation files are provided in the apps/ directory:
Slmple Ilbra ry WIth many Tutorial: KCore e BFS.C (breadth-first search)
U SerI examples APIV t » BFS-Bitvector.C (breadth-first search with a bitvector to mark visited vertices)
ertex

Graph * BC.C (betweenness centrality)

Running Code * Radii.C (graph eccentricity estimation)

Examples * Components.C (connected components)
¢ BellmanFord.C (Bellman-Ford shortest paths)
e PageRank.C
¢ PageRankDelta.C

http ://jSh U n .g ith U b. i O/I i g ra/ BFSCC.C (connected components based on BFS)

e KCore.C (computes k-cores of the graph)

Eccentricity Estimation

Code for eccentricity estimation is available in the apps/eccentricity/ directory:
e kBFS-Ecc.C (2 passes of multiple BFS's)
e kBFS-1Phase-Ecc.C (1 pass of multiple BFS's)

¢ FM-Ecc.C (estimation using Flajolet-Martin counters; an implementation of a variant of HADI from
TKDD '11)

e Loglog-Ecc.C (estimation using LogLog counters; an implementation of a variant of HyperANF
from WWW '11)

* RV.C (parallel implementation of the algorithm by Roditty and Vassilevska Williams from STOC '13)

e CLRSTV.C (parallel implementation of a variant of the algorithm by Chechik, Larkin, Roditty,
Schoenebeck, Tarjan, and Vassilevska Williams from SODA '14)

e kBFS-Exact.C (exact algorithm using multiple BFS's)
¢ TK.C (a parallel implementation of the exact algorithm by Takes and Kosters from Algorithms '13)
e Simple-Approx-Ecc.C (simple 2-approximation algorithm)

Follow the same instructions as above for compilation, but from the apps/eccentricity/ directory.

For kBFS-Ecc.C, kBFS-1Phase-Ecc.C, FM-Ecc.C, LogLog-Ecc.C, and kBFS-Exact.C, the "-r" flag followed
by an integer indicates the maximum number of words to associate with each vertex. For all
implementations, the "-s" flag should be used as the current implementations are designed for
undirected graphs. To output the eccentricity estimates to a file, use the "-out" flag followed by the
name of the output file. The file format is one integer per line, with the eccentricity estimate for vertex i
on line /.

Stanford (5149, Fall 2020

Elements of good domain-specific
programming system design

Stanford (5149, Fall 2020

#1: good systems identify the most important cases,
and provide most benefit in these situations

B Structure of code mimics the natural structure of problems in the domain

- Halide: pixel-wise view of filters: pixel(x,y) computed as expression of
these input pixel values

- Graph processing algorithms: per-vertex operations

m Efficient expression: common operations are easy and intuitive to express

B Efficient implementation: the most important optimizations in the
domain are performed by the system for the programmer

- My experience: a parallel programming system with “convenient” abstractions
that precludes best-known implementation strategies will almost always fail

Stanford (5149, Fall 2020

#2: good systems are simple systems

® They have a small number of key primitives and operations

- Ligra: only two operations! (vertexmap and edgemap)

- GraphLab: run computation per vertex, trigger new work by signaling
- But GraphLab gets messy with all the scheduling options

- Halide: a few scheduling primitives for describing loop nests

- Hadoop: map + reduce

m Allows compiler/runtime to focus on optimizing these primitives
- Provide parallel implementations, utilize appropriate hardware

®m Common question that good architects ask: “do we really need that?”
(can this concept be reduced to a primitive we already have?)

- For every domain-specific primitive in the system: there better be a strong
performance or expressivity justification for its existence

Stanford (5149, Fall 2020

#3: good primitives compose

m Composition of primitives allows for wide application scope, even if
scope is limited to a domain

— e.g., frameworks discussed today support a wide variety of graph algorithms

— Halide’s loop ordering + loop interleaving schedule primitives allow for expression
of wide range of schedules

m Composition often allows optimization to generalizable

- If system can optimize A and optimize B, then it can optimize programs that
combineAand B

m Common sign that a feature should not be added (or added ina
different way):
— The new feature does not compose with all existing features in the system

m Sign of a good design:

— System ultimately is used for applications original designers never anticipated
Stanford (5149, Fall 2020

Optimizing graph computations

(now we are talking about implementation)

Stanford (5149, Fall 2020

Wait a minute...

m Sofarin this lecture, we've discussed issues such as parallelism,
synchronization ...

m But you may recall from your assignment that graph processing is
typically has low arithmetic intensity
VTune profiling results from Asst 4: Memory bandwidth bound!

. " Memory Access Memory Usage viewpoint (change) @ Intel VTune Amplifier
Walklng over Edges accesses @ Analysis Target Analysis Type B Collection Log EASNIINEIRE +~ Bottom-up B Platform
information from “random” Elapsed Time “: 0.713s

o CPU Time 2.484s
graph Vertlces Memory Bound : 50.5%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand

load and stores. Use VTune Amplifier XE Memory Access analysis to have the metric breakdown by memory hierarchy, memory b
information, correlation by memory objects.

L1 Bound : 0.027
L2 Bound : 0.020
L3 Bound : 0.127

This metric shows how often CPU was stalled on L3 cache, or contended with a sibling Core. Avoiding cache misses (L2 misse
improves the latency and increases performance.

DRAM Bound : 0.320
This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and
performance.
Other: 1.2%
Average Latency (cycles) : 22

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop

o RIj
R|i| = N 2 Z ~Outlinks|7]

7 links to 2

Stanford (5149, Fall 2020

Two ideas to increase the performance of
operations on large graphs *

1. Reorganize graph structure to increase locality

2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge
Stanford (5149, Fall 2020

Recall: directed graph representation

Vertex Id
Outgoing Edges

N =
W N

Vertex Id 1 2 3
IncomingEdges 4 51 3 56 1 25

Stanford (5149, Fall 2020

Memory footprint challenge of large graphs

m (hallenge: cannot fit all edges in memory for large graphs

- Consider representation of graph from your programming assignment:
- Each edge represented twice in graph structure (as incoming/outgoing edge)
- 8 bytes per edge to represent adjacency
- May also need to store per-edge values (e.g., 4 bytes for a per-edge weight)
- 1billion edges (modest): ~12 GB of memory for edge information
- Algorithm may need multiple copies of per-edge structures (current, prev data, etc.)

m Could employ cluster of machines to store graph in memory
- Rather than store graph on disk

m Would prefer to process large graphs on a single machine

- Managing clusters of machines is difficult
- Partitioning graphs is expensive (also needs a lot of memory) and difficult

Stanford (5149, Fall 2020

“Streaming” graph computations

m Graph operations make “random” access to graph data (edges

adjacent to vertex v may distributed arbitrarily throughout storage)
- Single pass over graph’s edges might make billions of fine-grained accesses to disk

B Streaming data access pattern Processor
- Make large, predictable data accesses to slow storage I
(achieve high bandwidth data transfer)
_ Fast storage
- Load data from slow storage into fast storage*, then (low latency, high BW,
reuse it as much as possible before discarding it oW capadty)
(achieve high arithmetic intensity) I
- (Can we modify the graph data structure so that data Slow storage
access requires only a small number of efficient bulk (high latency, low BW,
loads/stores from slow storage? nioh @padity
Disk, SSD, etc.

* By fast storage, in this context | mean DRAM. However, techniques for streaming from disk into memory
would also apply to streaming from memory into a processor’s cache Stanford €5149, Fall 2020

GraphChi: Large-scale graph

Sharded graph representation

[Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
= Vertices and only incoming edges to these vertices are stored together in a shard
= Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3: 1]
vertices (1-2) vertices (3-4) vertices (5-6)

Yellow = data required to process subgraph
containing vertices in shard 1

Notice: to construct subgraph containing vertices in shard 1 and their incoming and
outgoing edges, only need to load contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes
Stanford (5149, Fall 2020

Sharded graph representation

GraphChi: Large-scale graph
computation on just a P(
[Kryola et al. 2013]

Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
= Vertices and only incoming edges to these vertices are stored together in a shard

Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3:
vertices (1-2) vertices (3-4) vertices (5-6)

Yellow = data required to process subgraph
containing vertices in shard 2

(o3

Stanford (5149, Fall 2020

GraphChi: Large-scale graph

Sharded graph representation

[Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
= Vertices and only incoming edges to these vertices are stored together in a shard
= Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3:
vertices (1-2) vertices (3-4) vertices (5-6)

9y

Yellow = data required to process subgraph
containing vertices in shard 3

Observe: due to sorting of incoming edges, iterating over all intervals
results in contiguous sliding window over the shards

Stanford (5149, Fall 2020

Putting it all together: looping over all
graph edges

For each partition i of vertices:
- Load shard / (contains all incoming edges)
- For each othershard s
- Load section of s containing data for edges leaving i and entering s
- Construct subgraph in memory

- Do processing on subgraph

Note: a good implementation could hide disk 1/0 by prefetching data for
next iteration of loop

Stanford (5149, Fall 2020

Performance on a Mac mini (8 GB RAM)

7 x 10°
g X 10 | | | 14 ‘ y ‘
’g S F B Disk IO OGraph construction B Exec. updates
o,
D 5 e Pagerank S 1o, pagerank 2500
®» 2.0 _/ %
o)) /
(@) + O + 2000
8 2/, Conn. comp. 810/ Conn. comp. * 1
: + x \‘ "5 ¥ 1500
2 1.55— o |
L x [®)) "
(&) S 1000
=BT x N % O 6] q\ o |
S Tbo AN E Tp, .
|E 05 © WebBP © = 4 © o WebBP * >0
0 2 4 6 8 0 2N . 4]c g 6 8 0
Number of edges X 109 umber ot edges x 10° 1 thread 2 threads 4 threads
(a) Performance: SSD (b) Performance : Hard drive (¢c) Runtime breakdown

Throughput (edges/sec) remains stable as graph size is increased
- Desirable property: throughput (edges/sec) largely invariant of dataset size

Stanford (5149, Fall 2020

Graph compression

m Recall: graph operations are often bandwidth bound

m |mplication: using additional CPU instructions to reduce BW
requirements can benefit overall performance (the processor
would be waiting on memory anyway, so use it to decompress
data!)

B |dea: store graph compressed in memory, decompress on-the-
fly when operation wants to read data

Stanford (5149, Fall 2020

Compressing an edge list

Vertex Id 32
OutgoingEdges 1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000

1. Sort edges for each vertex
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2. Compute differences

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000
01 4 20 971 S 14 1 5 98070 100000 75000

3. Group into sections requiring same number of bytes

relativeto .2, 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000
vertexindex -271 4 20 971 9 14 1 5 98070 100000 75000
| 1 byte | ibyte; | 1 byte - 4 bytes |
4. Encode deltas Uncompressed encoding: 12 edges x 4 bytes = 48 bytes

1-byte group header Compressed encoding: 26 bytes

| | [ONE_BYTE, 4], -27, 1, 4, 20 (5 bytes)
T I | [TWO_BYTE, 1], 971 (3 bytes)
6 bits: number of edges in group 'ONE_BYTE, 4], 9, 14, 1, 5 (5 bytes)

— 2 bits: encoding width (1, 2, 4 bytes)
[FOUR_BYTE, 3], 98070, 100000, 75000 (13 hytes)

Stanford (5149, Fall 2020

Performance impact of graph compression

Running time on one core

(relative to no compression)

2.4

9 L original Ligra === byte-RLE mmmm |
byte Hm—

Relative runtime

nibble M—

Relative runtime

1.8

1.6

1.4

1.2

0.8

[Shun et al. DDC2015]

Running time on 40 cores
(relative to no compression)

original Ligra 1
byte I

byte-RLE n—
nibble m——

m Benefit of graph compression increases with higher core count, since

computation is increasingly bandwidth bound

® Performance improves even if graphs already fit in memory
- Added benefit is that compression enables larger graphs to fit in memory

* Different data points on graphs are different compression schemes

(byte-RLE is the scheme on the previous slide)

Stanford (5149, Fall 2020

Summary

m Analyzing large graphs is a workload of high interest

m High performance execution requires

- Parallelism (complexity emerges from need to synchronize updates to
shared vertices or edges)

- Locality optimizations (restructure graph for efficient 1/0)
- Graph compression (reduce amount memory BW or disk 1/0)

m Graph-processing frameworks handle many of these details,
while presenting the application programmer with domain-
specificabstractions that make it easy to express graph
analysis operations

Stanford (5149, Fall 2020

How memory works

Stanford (5149, Fall 2020

Memory bandwidth limits

m So farin this course, we've stressed the need for reducing
bandwidth costs...

Stanford (5149, Fall 2020

Well written programs exploit locality to avoid
redundant data transfers between C(PU and memory

(Key idea: place frequently accessed data in caches/buffers near processor)

Core L1
Core L1
Core L1
Core L1

B Modern processors have high-bandwidth (and low latency) access to on-chip local storage
- Computations featuring data access locality can reuse data in this storage

B Common software optimization technique: reorder computation so that cached data is accessed
many times before it is evicted (“blocking”, “loop fusion’, etc.)

B Performance-aware programmers go to great effort to improve the cache locality of programs
- What are good examples from this class?

Stanford (5149, Fall 2020

Example 1: restructuring loops for locality

Program 1

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++) Two loads, one store per math op
———————————————————————

\ C[i] = A[i] + B[i]; (arithmetic intensity = 1/3)

void mul(%nt n, flc?at* A, float* B, float* C) { Two IOadS, one store per math op
for (int i=0; i<n; i++) ———————————————————————————————————— . o o o

} C[i] = A[i] * B[i]; (arithmeticintensity = 1/3)

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmpl); . o o .

mul(n, tmpl, C, tmp2); 4+————————————— Overall arithmeticintensity =1/3
add(n, tmp2, D, E);

Program 2

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0@; i<n; i++)

E[i] = D[] + (A[i] + B[i]) * c[i]; <————————————— Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E =D + (A + B) *C
fused(n, A, B, C, D, E);

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”
Stanford (5149, Fall 2020

Example 2: restructuring loops for locality

Recall Apache Spark:
Programs are sequences of operations on collections (called RDDs)

var lines = spark.textFile(“hdfs://15418log.txt”);

var lower = lines.map(_.toLower());

var mobileViews = lower.filter(x => isMobileClient(x));
var howMany = mobileViews.count();

Actual execution order of computation for the above lineage is
similar to this...

int count = 0;
while (inputFile.eof()) {
string line = inputFile.readlLine();
string lower = line.tolLower;
if (isMobileClient(lower))
count++;

Stanford (5149, Fall 2020

Example 3: restructuring loops for locality

int WIDTH = 1024; Program1
int HEIGHT = 1024; input

float input[(WIDTH+2) * (HEIGHT+2)]; (W+2)x(H+2)
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; {

float weights[] = {1.0/3, 1.0/3, 1.0/3}; tmp_buf
W x (H+2)
// blur image horizontally
for (int j=0; j<(HEIGHT+2); j++) *
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int ii=0; 1i<3; ii++) W x H
tmp += input[j*(WIDTH+2) + i+ii] * wy
tmp_buf[j*WIDTH + i] = tmp;
}

// blur tmp_buf vertically
for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;
}

Program 2
int WIDTH = 1024;
int HEIGHT = 1024; input
float input[(WIDTH+2) * (HEIGHT+2)]; (W+2)x(H+2)
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; v
float output[WIDTH * HEIGHT]; tmp_buf

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; jF<HEIGHT; j+CHUNK_SIZE) { output

// blur region of image horizontally
for (int j2=0; j2<CHUNK SIZE+2; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + i] = tmp;

// blur tmp_buf vertically
for (int j2=0; j2<CHUNK_SIZE; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
output[(j+j2)*WIDTH + i] = tmp;
}

Stanford (5149, Fall 2020

W Wx(CHUNK_SIZE+2)

Data movement has high energy cost

B Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

m “Ballpark” numbers (sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p) <«—— Suggests that recomputing values,
rather than storing and reloading

u |mp|i(ations them, is a better answer when

optimizing code for energy efficiency!
- Reading 10 GB/sec from memory: ~1.6 watts

- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

- iPhone 11 battery: ~12 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford C5149, Fall 2020

http://www.displaymate.com/iPad_ShootOut_1.htm

Data movement limits performance

Many processing elements...

= higher overall rate of memory requests

Moving data is costly!

= need for more memory bandwidth

(result: bandwidth-limited execution)

Memory

Core
Core
Memory bus
I
Core
Core
CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Data movement has high energy cost

~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access
~ 640 pJ to load 32 bits from LPDDR memory

Stanford (5149, Fall 2020

Accessing DRAM

(a basic tutorial on how DRAM works)

Stanford (5149, Fall 2020

The memory system

DRAM

64 bit memory bus

sends commands to DRAM

issues memory requests to memory controller

issues loads and store instructions

CPU

Stanford (5149, Fall 2020

DRAM array

1 transistor + capacitor per “bit” (Recall: a capacitor stores charge)

2 Kbits per row

Row buffer (2 Kbits)

Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2020

Estimated latencies are in

DRAM operation (load one byte) wisctnenn coss

DDR3-1600 (Kayvon’s laptop)
DRAM array

2 Kbits per row

We want to read this byte

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns)
Row buffer (2 Kbits)

(~ 10 ns) 3. Column selection
4. Transfer data onto bus Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2020

Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps

2 Kbits per row

Row buffer (2 Kbits)

1. Column selection
~ 10 ns
2. Transfer data onto bus Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2020

DRAM access latency is not fixed

m Best case latency: read from active row
- Column access time (CAS)

m Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

\ Precharge readies bit lines and writes row buffer

contents back into DRAM array (read was destructive)

m Question 1: when to execute precharge?

- After each column access?
- Only when new row is accessed?

m Question 2: how to handle latency of DRAM access?

Stanford (5149, Fall 2020

Problem: low pin utilization due to latency of access

Access 1 Access 3 Access 4
e EEE— _—l
[Las J(as) 3 3

time

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Data pins (8 bits)

Stanford (5149, Fall 2020

DRAM burst mode

Access 1
time
Ildea: amortize latency over larger transfers
I O

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Data pins (8 bits)

Stanford (5149, Fall 2020

DRAM chip consists of multiple banks

® All banks share same pins (only one transfer at a time)
® Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another

- Achieves high data pin utilization

A\

o ()) (D
ot () o) D
() (o) D

time

Banks 0-2
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Data pins (8 bits)

Stanford (5149, Fall 2020

Organize multiple chipsinto a DIMM

Example: Eight DRAM chips (64-bit memory bus) 3) B BpiimD
Note: DIMM appears as a single, higher capacity, wider interface DRAM = zf ﬂ _i 1
module to the memory controller. Higher aggregate bandwidth, but e o
minimum transfer granularity is now 64 bits.

.;. :

L.
:maf.c..z.t.f
@

ll

Memory controller | Read bank B, row R, column

ll

memory bus

‘ 64 bit

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

>J

Q

Last-level cache (LL(C)

CPU

Stanford (5149, Fall 2020

Reading one 64-byte (512 bit) cache line
(the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

[| I | I | I | I | I | I | I |
T _.l'.l'.lTI.'l.'I.'lT_l'l'l'l'l'l'l'l_ —rrrrn'n—. —rran— —rrrrrrn— —rrrrrrn— —TTITTI
bu507 1
64 bit
memory bus

ll

Memory controller : Readbank B, row R, column 0

ll

ll

Last-level cache (LLC) : Requestlme /w physical addressX

ll

CPU

Stanford (5149, Fall 2020

Reading one 64-byte (512 bit) cache line
(the wrong way)

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

T | | |
T —_rm'rm—
blts815 :

0

llllll

‘IIIIllll ‘ llllllll

0

lllllllll

Memory controller

0 0

% o

ll

64 bit
memory bus

ll

Last-level cache (LLC) :

ll

ll

CPU

Stanford (5149, Fall 2020

Reading one 64-byte (512 bit) cache line
(the wrong way)

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

| 1 | | |
EANRAAAN B —_rm'rm—
blts 16 23 :

0

llllll

‘IIIIllll ‘ llllllll

0

lllllllll

Memory controller

0 0

% o

ll

64 bit
memory bus

ll

Last-level cache (LLC) :

ll

ll

CPU

Stanford (5149, Fall 2020

Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

] I l l I I I ' W] I I l l I I ' IIII]]] I]] I l l I I ' ' l I l I l I I ' l I l I I l [‘ I l I l I l ' l I l I l l l I
IIIIIIIIII . L] .‘ “ L] L] L] L] L] L] L] .‘ “ L] L] L] L] L] L] L] .‘ “ L] L] L] L] L] L] || .. “ [L] L] L] L] L] L] || PS ..
3 . L . L .) .) . b .

=bits07= =bits815= :bits16 23= b|t52431 :bit532 39= :bits4047: b|ts48 55 :bits 56:63;

0 0
III

64 bit
memory bus

ll

ll

ll

ll

CPU

Stanford (5149, Fall 2020

Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

[|| |CEET 1| | S || |CEEET—]
. lTl'lTITI _.l'.l'.lTl.'l.'l.'l_ ITITITII JITIXIILT

* *
L4 L4

:bits64 71= :bits72 79= :bit58087: b|t58895 blts96103 blts104111 blts112119 blts120127

llllllllllll

64 bit
memory bus

Memory controller " Read bank B, row R, column 8
Last-level cache (LLO) © e s e s

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
Stanford (5149, Fall 2020

Memory controller is a memory request scheduler

m Receives load/store requests from LLC

® (Conflicting scheduling goals
- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)
- Service requests to currently open row first (maximize row locality)

- Service requests to other rows in FIFO order
- Controller may coalesce multiple small requests into large contiguous requests (to take
advantage of DRAM “burst modes”)

64 bit memory bus (to DRAM)

Memory controller
bank 0 request queue bank 2 request queue
bank 1 request queue bank 3 request queue

Requests from system’s last level cache (e.g., L3)

Stanford (5149, Fall 2020

Dual-channel memory system

B Increase throughput by adding memory channels (effectively widen bus)

B Below: each channel can issue independent commands
— Different row/column is read in each channel
— Simpler setup: use single controller to drive same command to multiple channels

Memory controller (channel 0) Memory controller (channel 1)

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2020

Example: DDR4 memory

Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

Memory system details from Intel’s site:
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

Memory Specifications

Max Memory Size (dependent on memory type) 64 GB
Memory Types DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels 2
ECC Memory Supported ¥ No
DDR4 2400

- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

* DDR stands for “double data rate”

Stanford (5149, Fall 2020

DRAM summary

m DRAM access latency can depend on many low-level factors
- Discussed today:
- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

m Significant amount of complexity in a modern multi-core
processor has moved into the design of memory controller

- Responsible for scheduling ten’s to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford (5149, Fall 2020

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford (5149, Fall 2020

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips

— DRAMs connected via through-silicon-vias (TSVs) that run through the chips

— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor

— Silicon “interposer” serves as high-bandwidth interconnect hetween DRAM stack and processor

ISIRI N !

Microbump
OO0

) ()

() ()

(J () () ()

L PHY PHY GPU/CPU/Soc Die
O 0O 0000000 U oo 000 O 0O 0O o

s I o I s o o o s o O - O o O s O
Package Substrate

Technologies:

Micron/Intel Hybrid Memory Cube (HB()
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD Stanford (5149, Fall 2020

GPUs are adopting HBM technologies

Stacked Memory

AMD Radeon Fury GPU (2015) B A
4096-bit interface: 4 HBM chips x 1024 bit interface per Chlp Fogicine \ y

512 GB/sec BW ’~

CPU/GPU

Package
Substrate

Interposer

| NVIDIA P100 GPU (2016)
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
. 720 GB/sec peak BW
BRI ™ 4 x 4GB =16 GB capacity

Stanford (5149, Fall 2020

Xeon Phi (Knights Landing) MCDRAM

® 16 GB in package stacked DRAM
B (Can be treated as a 16 GB last level cache
® (Orasa 16 GB separate address space (“flat mode”)
B |ntel’s claims: y 28 x4
- ~same latency at DDR4 / :m::ﬂ -;m:j —MC:;M— “r—

MCDRAM \

PCle 5‘
Gen 3 ,

- ~5x bandwidth of DDR4

- ~5X less energy cost per bit transferred
36 Tiles

connected by

2D Mesh
Interconnect

VWVrErmZZ>»ION & 000 w

\ LT

Qm..

WrFEFEmMmZZ>IN X000 W

MCDRAM MCDRAM MCDRAM
| Package)/

T

e

// allocate buffer in MCDRAM (“high bandwidth® memory malloc)
float* foo = hbw_malloc(sizeof(float) * 1024);

Stanford (5149, Fall 2020

Summary: the memory bottleneck is being

addressed in many ways

m By the application programmer
- Schedule computation to maximize locality (minimize required data movement)

m By new hardware architectures

- Intelligent DRAM request scheduling

- Bringing data closer to processor (deep cache hierarchies, 3D stacking)

- Increase bandwidth (wider memory systems)

- Ongoing research in locating limited forms of computation “in” or near memory
- Ongoing research in hardware accelerated compression (not discussed today)

m General principles

- Locate data storage near processor
- Move computation to data storage
- Data compression (trade-off extra computation for less data transfer)

Stanford (5149, Fall 2020

