
Parallel Computing
Stanford CS149, Fall 2020

Lecture 7:

GPU Architecture &
CUDA Programming

 Stanford CS149, Fall 2020

Today

▪ History: how graphics processors, originally designed to
accelerate 3D games, evolved into highly parallel compute
engines for a broad class of applications like:

- deep learning
- computer vision
- scientific computing

▪ Programming GPUs using the CUDA language

▪ A more detailed look at GPU architecture

 Stanford CS149, Fall 2020

Basic GPU architecture (from lecture 2)

Memory
DDR5 DRAM

(a few GB)

~150-300 GB/sec
(high end GPUs)

GPU
Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 Stanford CS149, Fall 2020

Graphics 101 + GPU history
(for fun)

 Stanford CS149, Fall 2020

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

What GPUs were originally designed to do:
3D rendering

 Stanford CS149, Fall 2020

What GPUs are still designed to do

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a high-end GPU

 Stanford CS149, Fall 2020

Render high complexity 3D scenes, in real-time

Far Cry 5

 Stanford CS149, Fall 2020

The 3D graphics workload

 Stanford CS149, Fall 2020

Tip: how to explain “a system”

▪ Step 1: describe the things (key entities) that are manipulated
- The nouns

 Stanford CS149, Fall 2020

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

1

2

3

4

Real-time graphics primitives (entities)
Represent surface as a 3D triangle mesh

 Stanford CS149, Fall 2020

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

1

2

3

4

Fragments

Real-time graphics primitives (entities)

 Stanford CS149, Fall 2020

How to explain “a system”

▪ Step 1: describe the things (key entities) that are manipulated
- The nouns

▪ Step 2: describe the operations the system performs on these
entities
- The verbs

 Stanford CS149, Fall 2020

Rendering a picture
Input: a list of vertices in 3D space
(and their connectivity into primitives)

list_of_positions = {
 v0x, v0y, v0z,
 v1x, v1y, v1x,
 v2x, v2y, v2z,
 v3x, v3y, v3x
 };

Example: every three vertices defines a triangle

triangle 0 = {v0, v1, v2}
triangle 1 = {v1, v2, v3}

Vertex Generation

3D vertex stream

Input vertex
buffer

 Stanford CS149, Fall 2020

Rendering a picture
Step 1: given a scene camera position/orientation
in 3D, compute where the vertices lie on screen

v1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Input vertex
buffer

v0

v2
v3

v0

v1

v2

v3

 Stanford CS149, Fall 2020

Rendering a picture
Step 2: group vertices into primitives

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Input vertex
buffer

v1

v0

v2
v3

Primitive stream
(triangles with
projected vertices)

 Stanford CS149, Fall 2020

Rendering a picture
Step 3: generate one fragment for each pixel a
primitive overlaps

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

 Stanford CS149, Fall 2020

Rendering a picture
Step 4: compute color of primitive for each
fragment (based on a description of surface
materials and scene lighting) Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

 Stanford CS149, Fall 2020

Rendering a picture
Step 5: put color of the “closest fragment”
to the camera in the output image

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

 Stanford CS149, Fall 2020

Real-time graphics pipeline

Abstracts process of rendering a picture
as a sequence of operations on vertices,
primitives, fragments, and pixels. Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

 Stanford CS149, Fall 2020

Fragment processing computations simulate
reflection of light off of real-world materials

Example materials:

Images from Matusik et al. SIGGRAPH 2003

 Stanford CS149, Fall 2020

Great diversity of materials and lights in the world!

 Stanford CS149, Fall 2020

Graphics shading languages
▪ Allow application to extend the functionality of the

graphics pipeline by providing code to define
behavior of materials and lights
- Support diversity in materials
- Support diversity in lighting conditions

▪ Programmer provides mini-programs (“shaders”)
that define pipeline logic for certain stages
- Pipeline maps shader function onto all

elements of input stream

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

 Stanford CS149, Fall 2020

Example fragment shader program *

uniform sampler2D myTexture;
uniform float3 lightDir;

varying vec3 norm;

varying vec2 uv;

void myFragmentShader()
{
 vec3 kd = texture2D(myTexture, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return vec4(kd, 1.0);
}

OpenGL shading language (GLSL) shader program:
defines behavior of fragment processing stage

myTexture is a texture map

Run once per fragment (per pixel covered by a triangle)

read-only global variables

per-fragment inputs

per-fragment output: RGBA surface color at pixel

“fragment shader”
(a.k.a function invoked for each input
pixel fragment)

* Syntax/details of this code not important to CS149
 What is important is that a fragment shader is a pure function invoked on a stream of inputs.

 Stanford CS149, Fall 2020

Shaded result
Image contains output of myFragmentShader for each pixel covered by surface
(pixels covered by multiple surfaces contain output from surface closest to camera)

 Stanford CS149, Fall 2020

Why do GPU’s have many high-throughput cores?

Memory
DDR5 DRAM

(a few GB)

~150-300 GB/sec
(high end GPUs)

GPU

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

Many SIMD, multi-threaded cores provide efficient execution of vertex and
fragment kernels

 Stanford CS149, Fall 2020

Observation circa 2001-2003
GPUs are very fast processors for performing the same computation (shader programs) in
parallel on large collections of data (streams of vertices, fragments, and pixels)

Wait a minute! That sounds a lot like
data-parallelism to me! I remember
data-parallelism from exotic
supercomputers in the 90s.

And every year GPUs are getting faster
because more transistors = more
parallelism.

 Stanford CS149, Fall 2020

Hack! early GPU-based scientific computation

Set output image size to be array size (512 x 512)
Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

v0=(0,0) v1=(512,0)

v2=(512, 512)v3=(0, 512)

We now can use the GPU like a data-parallel
programming system.

Fragment shader function is mapped over
512 x 512 element collection.

Hack!

Say you want to run a function on all elements of a 512x512 array

 Stanford CS149, Fall 2020

“GPGPU” 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

GPGPU = “general purpose” computation on GPUs

 Stanford CS149, Fall 2020

Brook stream programming language (2004)
▪ Stanford graphics lab research project

▪ Abstract GPU hardware as data-parallel processor

kernel void scale(float amount, float a<>, out float b<>)
{
 b = amount * a;
}

float scale_amount;
float input_stream<1000>; // stream declaration
float output_stream<1000>; // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);

▪ Brook compiler translated generic stream program into
graphics commands (such as drawTriangles) and a set of
graphics shader programs that could be run on GPUs of the day.

[Buck 2004]

 Stanford CS149, Fall 2020

GPU compute mode

 Stanford CS149, Fall 2020

Review: how to run code on a CPU

Lets say a user wants to run a program on a
multi-core CPU…

- OS loads program text into memory

- OS selects CPU execution context

- OS interrupts processor, prepares execution
context (sets contents of registers, program
counter, etc. to prepare execution context)

- Go!

- Processor begins executing instructions from
within the environment maintained in the
execution context.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Multi-core CPU

 Stanford CS149, Fall 2020

How to run code on a GPU (prior to 2007)

Let’s say a user wants to draw a picture using a GPU…

- Application (via graphics driver) provides GPU vertex
and fragment shader program binaries

- Application sets graphics pipeline parameters
(e.g., output image size)

- Application provides GPU a buffer of vertices

- Application sends GPU a “draw” command:
drawPrimitives(vertex_buffer)

Vertex Processing

Vertex Generation

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment Processing

Pixel Operations
Output

image buffer
(pixels)

Input vertex
buffer

This was the only interface to GPU hardware.

GPU hardware could only execute graphics
pipeline computations.

 Stanford CS149, Fall 2020

NVIDIA Tesla architecture (2007)
First alternative, non-graphics-specific (“compute mode”) interface to GPU hardware

Let’s say a user wants to run a non-graphics
program on the GPU’s programmable cores…

- Application can allocate buffers in GPU memory
and copy data to/from buffers

- Application (via graphics driver) provides GPU a
single kernel program binary

- Application tells GPU to run the kernel in an
SPMD fashion (“run N instances of this kernel”)

launch(myKernel, N)

Interestingly, this is a far simpler operation
than the graphics operation drawPrimitives()

 Stanford CS149, Fall 2020

CUDA programming language
▪ Introduced in 2007 with NVIDIA Tesla architecture

▪ “C-like” language to express programs that run on GPUs using the
compute-mode hardware interface

▪ Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

▪ Note: OpenCL is an open standards version of CUDA
- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs and GPUs from many vendors
- Almost everything I say about CUDA also holds for OpenCL
- CUDA is better documented, thus I find it preferable to teach with

 Stanford CS149, Fall 2020

The plan
1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:
- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?

 Stanford CS149, Fall 2020

Clarification (here we go again...)
▪ I am going to describe CUDA abstractions using CUDA

terminology

▪ Specifically, be careful with the use of the term CUDA thread.
A CUDA thread presents a similar abstraction as a pthread in
that both correspond to logical threads of control, but the
implementation of a CUDA thread is very different

▪ We will discuss these differences at the end of the lecture

 Stanford CS149, Fall 2020

CUDA programs consist of a hierarchy of concurrent threads
Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

 Stanford CS149, Fall 2020

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

“Host” code : serial execution
Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

// kernel definition (runs on GPU)
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + B[j][i];
}

CUDA kernel definition
“CUDA device” code: kernel function (__global__
denotes a CUDA kernel function) runs on GPU

 Stanford CS149, Fall 2020

Clear separation of host and device code

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

Separation of execution into host and device code is performed statically by the programmer

__device__ float doubleValue(float x)
{
 return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + doubleValue(B[j][i]);
}

 Stanford CS149, Fall 2020

Number of SPMD “CUDA threads” is explicit in the program
Number of kernel invocations is not determined by size of data collection
(a kernel launch is not specified by map(kernel, collection) as was the case with graphics shader programming)

const int Nx = 11; // not a multiple of threadsPerBlock.x
const int Ny = 5; // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
 (Ny+threadsPerBlock.y-1)/threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 // guard against out of bounds array access
 if (i < Nx && j < Ny)
 C[j][i] = A[j][i] + B[j][i];
}

Regular application thread running on CPU (the “host”)

CUDA kernel definition

 Stanford CS149, Fall 2020

CUDA execution model

Host
(serial execution)

CUDA device
(SPMD execution)

Implementation: CPU Implementation: GPU

 Stanford CS149, Fall 2020

CUDA memory model

Host
(serial execution)

CUDA device
(SPMD execution)

Host memory
address space

Device “global”
memory address space

Implementation: CPU Implementation: GPU

Distinct host and device address spaces

 Stanford CS149, Fall 2020

memcpy primitive
Move data between address spaces

Host Device

Host memory
address space

Device “global”
memory address space

float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A
for (int i=0 i<N; i++)
 A[i] = (float)i;

int bytes = sizeof(float) * N;
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: directly accessing deviceA[i] is an invalid
// operation here (cannot manipulate contents of deviceA
// directly from host, since deviceA is not a pointer
// into the host’s address space)

What does cudaMemcpy remind you of?

 Stanford CS149, Fall 2020

CUDA device memory model

Per-block
shared memory

Per-thread
private memory

Readable/ writable by
all threads in block

Readable/ writable by
thread

Device global
memory

Readable/writable
by all threads

Three distinct types of address spaces visible to kernels

Different address spaces reflect different regions of
locality in the program

As we will soon see, this has important implications to
efficiency of GPU implementations of CUDA

e.g., how might you schedule threads if you know a priori
that certain threads access the same variables)?

 Stanford CS149, Fall 2020

CUDA example: 1D convolution

input[0]

output[0] output[1] output[2] output[3] output[4] output[5] output[6] output[7]

input[1] input[2] input[3] input[4] input[5] input[6] input[7] input[8] input[9]

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

 Stanford CS149, Fall 2020

1D convolution in CUDA (version 1)
One thread per output element

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += input[index + i];

 output[index] = result / 3.f;
}

each thread writes result
to global memory

each thread computes
result for one element

int N = 1024 * 1024;
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate input array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate output array in device memory

// properly initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

 Stanford CS149, Fall 2020

1D convolution in CUDA (version 2)
One thread per output element: stage input data in per-block shared memory

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result / 3.f;
}

All threads cooperatively load
block’s support region from
global memory into shared
memory
(total of 130 load instructions
instead of 3 * 128 load instructions)

barrier (all threads in block)

write result to global
memory

each thread computes
result for one element

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

 Stanford CS149, Fall 2020

CUDA synchronization constructs
▪ __syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float atomicAdd(float* addr, float amount)
- CUDA provides atomic operations on both global memory addresses and per-

block shared memory addresses

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

 Stanford CS149, Fall 2020

Summary: CUDA abstractions
▪ Execution: thread hierarchy

- Bulk launch of many threads (this is imprecise... I’ll clarify later)
- Two-level hierarchy: threads are grouped into thread blocks

▪ Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces
- Three different types of device address spaces
- Per thread, per block (“shared”), or per program (“global”)

▪ Barrier synchronization primitive for threads in thread block

▪ Atomic primitives for additional synchronization (shared and global variables)

 Stanford CS149, Fall 2020

CUDA semantics
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result / 3.f;
}

// host code //
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput); launch over 1 million CUDA
threads (over 8K thread blocks)

Will running this CUDA program
create 1 million instances of
local variables/per-thread stack?

8K instances of shared
variables? (support)

Consider implementation of call to
pthread_create() or std::thread():

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can

schedule thread

 Stanford CS149, Fall 2020

Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Desirable for CUDA program to run on all of
these GPUs without modification

Note: there is no concept of num_cores in
the CUDA programs I have shown you. (CUDA
thread launch is similar in spirit to a forall
loop in data parallel model examples)

 Stanford CS149, Fall 2020

CUDA compilation
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // per block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}

launch 8K thread blocks

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- B bytes of local data per thread
- 128+2=130 floats (520 bytes) of

shared space per thread block

int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

 Stanford CS149, Fall 2020

CUDA thread-block assignment

Thread block scheduler

Shared mem Shared mem Shared mem Shared mem

Device global memory
(DRAM)

Kernel launch command from host
launch(blockDim, convolve)

. . .
Grid of 8K convolve thread blocks (specified by kernel launch)

Block resource requirements:
(contained in compiled kernel binary)
128 threads
520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDA assumption: thread block
execution can be carried out in any order
(no dependencies between blocks)

GPU implementation maps thread blocks
(“work”) to cores using a dynamic
scheduling policy that respects resource
requirements

Shared mem is fast
on-chip memory

Special HW
in GPU

 Stanford CS149, Fall 2020

Another instance of our common design pattern:
a pool of worker “threads”

Problem to solve

Sub-problems
(aka “tasks”, “work”)

Worker Threads

Decomposition

Assignment

Other examples:
- ISPC’s implementation of launching tasks
- Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program

- Thread pool in a web server
- Number of threads is a function of number of cores, not number of outstanding requests
- Threads spawned at web server launch, wait for work to arrive

 Stanford CS149, Fall 2020

NVIDIA V100 SM “sub-core” Warp Selector

0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

= SIMD fp32 functional unit,
 control shared across 16 units
 (16 x MUL-ADD per clock *)

= SIMD int functional unit,
 control shared across 16 units
 (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit,
 control shared across 8 units
 (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

* one 32-wide SIMD operation every two clocks

** one 32-wide SIMD operation every four clocks

Fetch/
Decode

 Stanford CS149, Fall 2020

Warp Selector

0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/
Decode

NVIDIA V100 SM “sub-core”

Scalar registers for one CUDA thread: R0, R1, etc…

Scalar registers for another CUDA thread: R0, R1, etc…

 Stanford CS149, Fall 2020

Warp Selector

0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/
Decode

NVIDIA V100 SM “sub-core”

Scalar registers for 32 threads in the same “warp”

A group of 32 threads in thread block is called a warp.
- In a thread block, threads 0-31 fall into the same

warp (so do threads 32-63, etc.)
- Therefore, a thread block with 256 CUDA threads is

mapped to 8 warps.
- Each sub-core in the V100 is capable of scheduling

and interleaving execution of up to 16 warps

 Stanford CS149, Fall 2020

Warp Selector

0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/
Decode

NVIDIA V100 SM “sub-core”
Scalar registers for 32 threads in the same “warp”

Threads in a warp are executed in a SIMD manner
if they share the same instruction

- If the 32 CUDA threads do not share the same
instruction, performance can suffer due to
divergent execution.

- This mapping is similar to how ISPC runs program
instances in a gang *

A warp is not part of CUDA, but is an important CUDA
implementation detail on modern NVIDIA GPUs

* But GPU hardware is dynamically checking whether 32 independent CUDA threads share an instruction, and if this is true, it
executes all 32 threads in a SIMD manner. The CUDA program is not compiled to SIMD instructions like ISPC gangs.

 Stanford CS149, Fall 2020

NVIDIA V100 GPU SM

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit,
 control shared across 16 units
 (16 x MUL-ADD per clock *)

= SIMD int functional unit,
 control shared across 16 units
 (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit,
 control shared across 8 units
 (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

 Stanford CS149, Fall 2020

Running a thread block on a V100 SM

SM core operation each clock:
- Each sub-core selects one runnable warp (from the 16 warps in its partition)
- Each sub-core runs next instruction for the CUDA threads in the warp (this instruction may

apply to all or a subset of the CUDA threads in a warp depending on divergence)

A convolve thread block is executed by 4 warps
(4 warps x 32 threads/warp = 128 CUDA threads per block)

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input,
 float* output)
{
 __shared__ float support[THREADS_PER_BLK+2];
 int index = blockIdx.x * blockDim.x +
 threadIdx.x;

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x]
 = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}

support
(520 bytes)

 Stanford CS149, Fall 2020

L2 Cache (6 MB)

GPU memory (HBM)
(16 GB)

900 GB/sec
(4096 bit interface)

NVIDIA V100 GPU (80 SMs)

 Stanford CS149, Fall 2020

Summary: geometry of the V100 GPU
1.245 GHz clock

80 SM cores per chip

80 x 4 x 16 = 5,120 fp32 mul-add ALUs
 = 12.7 TFLOPs *

Up to 80 x 64 = 5120 interleaved warps
per chip (163,840 CUDA threads/chip)

* mul-add counted as 2 flops:

L2 Cache (6 MB)

GPU memory (16 GB)

900 GB/sec

 Stanford CS149, Fall 2020

Running a CUDA program on a GPU

 Stanford CS149, Fall 2020

Running the convolve kernel
convolve kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block requires 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size N is very large, so the host-side kernel launch generates thousands of thread blocks.
#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Let’s run this program on the fictitious two-core GPU below.
(Note: my fictitious cores are much “smaller” than the V100 SM cores discussed earlier in lecture: they have
fewer execution units, support for fewer active warps, less shared memory, etc.)

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

 Stanford CS149, Fall 2020

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads
and 520 bytes of shared storage)

NEXT = 1
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 0 (contexts 0-127)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 2
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 1 (contexts 0-127)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 3
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255)

Block 1 (contexts 0-127)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).
Only two thread blocks fit on a core
(third block won’t fit due to insufficient shared storage 3 x 520 bytes > 1.5 KB)

NEXT = 4
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 4: thread block 0 completes on core 0

NEXT = 4
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

NEXT = 5
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 6: thread block 2 completes on core 0

NEXT = 5
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 Stanford CS149, Fall 2020

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

NEXT = 6
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)
Block 5: support

(520 bytes 0x520)

Block 5 (contexts 128-255)

 Stanford CS149, Fall 2020

More advanced scheduling questions:
(If you understand the following examples you really understand how
CUDA programs run on a GPU, and also have a good handle on the work

scheduling issues we’ve discussed in the course up to this point.)

 Stanford CS149, Fall 2020

Why must CUDA allocate execution contexts for all threads in a block?
#define THREADS_PER_BLK 256

__global__ void convolve(int N, float* input,
 float* output)
{
 __shared__ float support[THREADS_PER_BLK+2];
 int index = blockIdx.x * blockDim.x +
 threadIdx.x;

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x]
 = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}Imagine a thread block with 256 CUDA threads

(see code, top-right)

Assume a fictitious SM core (shown above) with only four
warps worth of parallel execution in HW

Why not just run four warps (threads 0-127) to completion
then run next four warps (threads 128-255) to completion in
order to execute the entire thread block?

CUDA kernels may create dependencies between
threads in a block

Simplest example is __syncthreads()

Threads in a block cannot be executed by the
system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running
concurrently. If a thread in a block is runnable it
will eventually be run! (no deadlock)

 Stanford CS149, Fall 2020

Implementation of CUDA abstractions
▪ Thread blocks can be scheduled in any order by the system

- System assumes no dependencies between blocks
- Logically concurrent
- A lot like ISPC tasks, right?

▪ CUDA threads in same block run concurrently (live at same time)
- When block begins executing, all threads exist and have register state allocated

(these semantics impose a scheduling constraint on the system)
- A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
- Threads in thread block are concurrent, cooperating “workers”

▪ CUDA implementation:
- A NVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances (but unlike

an ISPC gang, the warp concept does not exist in the programming model*)
- All warps in a thread block are scheduled onto the same SM, allowing for high-BW/low latency

communication through shared memory variables
- When all threads in block complete, block resources (shared memory allocations, warp execution

contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote

 Stanford CS149, Fall 2020

Consider a program that creates a histogram:
▪ This example: build a histogram of values in an array

- All CUDA threads atomically update shared variables in global memory

▪ Notice I have never claimed CUDA thread blocks were guaranteed to be independent. I
only stated CUDA reserves the right to schedule them in any order.

Global memory

int counts[10]

Thread block 0 Thread block N

. . .atomicAdd(&counts[A[i]], 1); atomicAdd(&counts[A[i]], 1);

int* A = {0, 3, 4, 1, 9 , 2, . . . , 8, 4 , 1 }; // array of integers between 0-9

▪ This is valid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

. . .
int A[N]

 Stanford CS149, Fall 2020

. . .

But is this reasonable CUDA code?
▪ Consider implementation of on a single core GPU with resources

for one CUDA thread block per core
- What happens if the CUDA implementation runs block 0 first?

- What happens if the CUDA implementation runs block 1 first?

Global memory
int myFlag

// do stuff here

atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
 { }

// do stuff here

(assume myFlag is initialized to 0)

Thread block 0 Thread block 1

 Stanford CS149, Fall 2020

“Persistent thread” CUDA programming style
#define THREADS_PER_BLK 128
#define BLOCKS_PER_CHIP 80 * (32*64/128) // specific to V100 GPU

__device__ int workCounter = 0; // global mem variable

__global__ void convolve(int N, float* input, float* output) {
 __shared__ int startingIndex;
 __shared__ float support[THREADS_PER_BLK+2]; // shared across block
 while (1) {

 if (threadIdx.x == 0)
 startingIndex = atomicInc(workCounter, THREADS_PER_BLK);
 __syncthreads();

 if (startingIndex >= N)
 break;

 int index = startingIndex + threadIdx.x; // thread local
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2)
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];
 output[index] = result;

 __syncthreads();
 }
}

// host code //
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// properly initialize contents of devInput here ...

convolve<<<BLOCKS_PER_CHIP, THREADS_PER_BLK>>>(N, devInput, devOutput);

Idea: write CUDA code that requires
knowledge of the number of cores and
blocks per core that are supported by
underlying GPU implementation.

Programmer launches exactly as many
thread blocks as will fill the GPU

(Program makes assumptions about GPU
implementation: that GPU will in fact run
all blocks concurrently. Ugg!)

Now, work assignment to blocks is
implemented entirely by the application

(circumvents GPU’s thread block scheduler)

Now the programmer’s mental model is
that *all* CUDA threads are concurrently
running on the GPU at once.

 Stanford CS149, Fall 2020

CUDA summary
▪ Execution semantics

- Partitioning of problem into thread blocks is in the spirit of the data-parallel model
(intended to be machine independent: system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)
- Inside a single thread block: SPMD shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure
you understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

▪ Memory semantics
- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about local/shared/
global memory as being distinct address spaces)

▪ Key implementation details:
- Threads in a thread block are scheduled onto same GPU core to allow fast communication

through shared memory
- Threads in a thread block are are grouped into warps for SIMD execution on GPU hardware

 Stanford CS149, Fall 2020

One last point…
▪ In this lecture, we talked about writing CUDA programs for

the programmable cores in a GPU
- Work (described by a CUDA kernel launch) was mapped onto the cores via a

hardware work scheduler

▪ Remember, there is still the graphics pipeline interface for
driving GPU execution
- And much of the interesting non-programmable functionality of the GPU is

present to accelerate execution of graphics pipeline operations

- It’s more or less “turned off” when running CUDA programs

▪ How the GPU implements the graphics pipeline efficiently is
a topic for a graphics class… *

* See CS248 or CS348K

 Stanford CS149, Fall 2020

And…
▪ We didn’t even talk about the hundreds of teraflops

available in the tensor cores in the SM (for deep learning)

▪ A topic for a later class…

* See CS248 or CS348K

