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What’s Due

▪ Oct 20
- Written Assignment 3

▪ Oct 23
- Prog. Assignment 3: A Simple Renderer in CUDA

▪ Oct 27
- Midterm
- Open book, open notes
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Two Hard Things

There are only two hard things in Computer Science: cache 
invalidation and naming things.

-- Phil Karlton
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Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to determine the state of a line in 

the other caches
▪ Alternative idea: avoid broadcast by storing information about the status of the 

line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches

- Caches look up information from the directory as necessary

- Improves scalability 
- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis  

(not by broadcast mechanisms) 

- Can partition memory and use multiple directories

▪ Still need to maintain invariants
- SWMR

- Write serialization
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Directory coherence in Intel Core i7 CPU

▪ L3 serves as centralized directory for all lines in the L3 cache
- Serialization point

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

▪ Directory maintains list of L2 caches containing line 
▪ Instead of broadcasting coherence traffic to all L2’s, only 

send coherence messages to L2’s that contain the line
▪ Directory dimensions:

- P=4
- M = number of L3 cache lines

▪ Lots of complexity in multi-chip directory implementationsCore

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

One directory entry per cache line
Directory. . .

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty 
in one of the processors’ caches

(Core i7 interconnect is a ring, it is not a bus)
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Implications of cache coherence 
to the programmer
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Communication Overhead

▪ Communication time is key parallel overhead
- Appears as increased memory latency in multiprocessor
- Extra main memory cache misses
- Must determine lowering of cache miss rate vs. uniprocessor

- Some accesses have higher latency in NUMA systems
- Only a fraction of a % of these can be significant!

Register, < 1ns

L1 Cache, ~ 1ns

L2 Cache, ~ 3-10ns

Main Memory, ~ 50-100ns

Remote, ~ 300-1000ns

Register, less register alloc.

L1 Cache, lower hit rate

L2 Cache, lower hit rate

Main, can “miss” in NUMA

Remote, extra long delays

Uniprocessor Multiprocessor 
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Unintended communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];
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Demo: false sharing
void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with num_threads=8 
on 4-core system:  14.2 sec

Execution time with num_threads=8 
on 4-core system: 4.7 sec

threads update a per-thread counter many times
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False sharing
▪ Condition where two processors write to different addresses, but 

addresses map to the same cache line

▪ Cache line “ping-pongs” between caches of writing processors, 
generating significant amounts of communication due to the 
coherence protocol

▪ No inherent communication, this is entirely artifactual 
communication (cachelines > 4B)

▪ False sharing can be a factor in when programming for cache-
coherent architectures

P1 P2

Cache line
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Impact of cache line size on miss rate
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* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta
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Summary: Cache coherence
▪ The cache coherence problem exists because the abstraction of a single shared address space is 

not implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

▪ Main idea of snooping-based cache coherence:  whenever a cache operation occurs that could 
affect coherence, the cache controller broadcasts a notification to all other cache controllers in 
the system
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.g., false 

sharing)

▪ Scalability of snooping implementations is limited by ability to broadcast coherence messages 
to all caches!
- Scaling cache coherence via directory-based approaches

- Coherence protocol becomes more complicated



Stanford CS149, Fall 2020

Shared Memory Behavior

▪ Intuition says loads should return latest value written
- What is latest?

- Coherence: only one memory location

- Consistency: apparent ordering for all locations
- Order in which memory operations performed by one thread become visible to other threads

▪ Affects
- Programmability: how programmers reason about program behavior

- Allowed behavior of multithreaded programs executing with shared memory

- Performance: limits HW/SW optimizations that can be used
- Reordering memory operations to hide latency
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Today: what you should know

▪ Understand the motivation for relaxed consistency models

▪ Understand the implications of relaxing W→R ordering

▪ Understand how to program correctly with relaxed consistency



Stanford CS149, Fall 2020

Today: who should care

▪ Anyone who:
- Wants to implement a synchronization library
- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures *

*    Topic of a later lecture
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Memory coherence vs. memory consistency

▪ Memory coherence defines requirements for the observed behavior of reads and 
writes to the same memory location
- All processors must agree on the order of reads/writes to X
- In other words: it is possible to put all operations involving X on a timeline such that the observations of 

all processors are consistent with that timeline

▪ Memory consistency defines the behavior of reads and writes to different locations 
(as observed by other processors)
- Coherence only guarantees that writes to address X will eventually propagate to other processors
- Consistency deals with when writes to X propagate to other processors, relative to reads and writes to 

other addresses

Observed chronology of 
operations on address X

P0 write: 5

P1 read (5)

P2 write: 10

P2 write: 11

P1 read (11)
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Coherence vs. Consistency
(said again, perhaps more intuitively this time)

▪ The goal of cache coherence is to ensure that the memory system in a parallel computer behaves 
as if the caches were not there

- Just like how the memory system in a uni-processor system behaves as if the cache was not there

▪ A system without caches would have no need for cache coherence

▪ Memory consistency defines the allowed behavior of loads and stores to different addresses in a 
parallel system

- The allowed behavior of memory should be specified whether or not caches are present (and that’s what a memory 
consistency model does)
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Memory Consistency

▪ The trailer:
- Multiprocessors reorder memory operations in unintuitive and strange ways
- This behavior is required for performance
- Application programmers rarely see this behavior
- Systems (OS and compiler) developers see it all the time
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Memory operation ordering
▪ A program defines a sequence of loads and stores

(this is the “program order” of the loads and stores)

▪ Four types of memory operation orderings
- WX→RY: write to X must commit before subsequent read from Y *
- RX →R Y : read from X must commit before subsequent read from Y
- RX →WY : read to X must commit before subsequent write to Y
- WX →WY : write to X must commit before subsequent write to Y

* To clarify: “write must commit before subsequent read” means:
When a write comes before a read in program order,  the write must commit (its results are visible) 
by the time the read occurs.
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Multiprocessor Execution

▪ What can be printed?

- “01”?
- “10”?
- “11”?
- “00”?

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A
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Orderings That Should Not Happen

▪ The program should not print “10” or  “00”

▪ A “happens-before” graph shows the order in which events must execute to get a 
desired outcome

▪ If there’s a cycle in the graph, an outcome is impossible—an event must happen 
before itself!

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A
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What Should Programmers Expect

▪ Sequential Consistency

- Lamport 1976 (Turing Award 2013)

- All operations executed in some sequential order

- As if they were manipulating a single shared memory

- Each thread’s operations happen in program order

▪ A sequentially consistent memory system maintains all four memory 
operation orderings (WX →RY, RX→RY, RX→WY, WX→WY)

There is a chronology of all memory 
operations that is consistent with observed 

values

P0 store: X ←5

P1 store: X ←10

P0 store: Y ←1

P1 load: X

P0 load: X

P1 store: Y ←20

Note, now timeline lists 
operations to addresses X and Y
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Sequential consistency (switch metaphor)

Processor 1 Processor 2 Processor 3Processor 0

Memory

▪ All processors issue loads and stores in program order
▪ Memory chooses a processor at random, performs a memory 

operation to completion, then chooses another processor, …
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Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed “switch” running one instruction 
at a time
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Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

“switch” running one instruction 
at a time
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Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

“switch” running one instruction 
at a time
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Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)  

“switch” running one instruction 
at a time
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Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)  

R1 = B (1)

“switch” running one instruction 
at a time
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Relaxing memory operation ordering

▪ A sequentially consistent memory system maintains all four memory 
operation orderings (WX →RY, RX→RY, RX→WY, WX→WY)

▪ Relaxed memory consistency models allow certain orderings to be 
violated
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Motivation for relaxed consistency: hiding latency
▪ Why are we interested in relaxing ordering requirements?

- To gain performance

- Specifically, hiding memory latency: overlap memory access operations with other operations when they are independent

- Remember, memory access in a cache coherent system may entail much more work then simply reading bits from memory (finding 
data, sending invalidations, etc.)

Write A

Read B

Write A
Read B

vs.
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Problem with SC

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

These two instructions don’t conflict—there’s 
no need to wait for the first one to finish!

Writing takes a long time: 100s of 
cycles
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Optimization: Write Buffer

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed

A = 1

Write Buffer
A = 1

Write Buffer

Each processor reads from and 
writes to own write buffer
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Write Buffers Change Memory Behavior

Memory

A = 0
B = 0

Processor 0

Write Buffer

Processor 1

Write Buffer

Initially A = B = 0

Proc 0
(1) A = 1
(2) r1 = B

Proc 1
(3) B = 1
(4) r2 = A

Can r1 = r2 = 0?
SC: No
Write  buffers:
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Write buffer performance

Base: Sequentially consistent execution. Processor issues one memory operation at a time, 
stalls until completion
W-R: relaxed W→R ordering constraint (write latency almost fully hidden) 

Processor 1

Cache

Write Buffer

Reads Writes

Reads Writes
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Write Buffers: Who Cares?
▪ Performance improvement
▪ Every modern processor uses them
- Intel x86, ARM, SPARC

▪ Need a weaker memory model
- TSO: Total Store Order
- Slightly harder to reason about than SC
- x86 uses an incompletely specified form of TSO
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Allowing reads to move ahead of writes
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ Allow processor to hide latency of writes
- Total Store Ordering (TSO) 
- Processor Consistency (PC)

Write A

Read B

Write A

Read B

vs.
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Allowing reads to move ahead of writes
▪ Total store ordering (TSO)

- Processor P can read B before its write to A is seen by all processors

(processor can move its own reads in front of its own writes)
- Reads by other processors cannot return new value of A until the write to A is observed by all 

processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all processors

▪ In TSO and PC, only WX →RY  order is relaxed. The WX →WY constraint still exists. Writes by the same 
thread are not reordered (they occur in program order)  
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Clarification (make sure you get this!)
▪ The cache coherency problem exists because hardware implements the 

optimization of duplicating data in multiple processor caches. The copies of the 
data must be kept coherent.

▪ Relaxed memory consistency issues arise from the optimization of reordering 
memory operations. (Consistency is unrelated to whether or not caches exist in the 
system.)
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Allowing writes to be reordered
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ Partial Store Ordering (PSO)
- Execution may not match sequential consistency on program 1

(P2 may observe change to flag before change to A)

A = 1;

flag = 1;

while (flag == 0);

print A;

Thread 1 (on P1) Thread 2 (on P2)
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Why might it be useful to allow more aggressive memory 
operation reorderings? 

▪ W→W: processor might reorder write operations in a write buffer (e.g., one is a cache miss 
while the other is a hit)

▪ R→W, R→R: processor might reorder independent instructions in an instruction stream 
(out-of-order execution)

▪ Keep in mind these are all valid optimizations if a program consists of a single instruction 
stream
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Allowing all reorderings
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ No guarantees about operations on data!

- Everything can be reordered

▪ Motivation is increased performance

- Overlap multiple reads and writes in the memory system
- Execute reads as early as possible and writes as late as possible to hide 

memory latency

▪ Examples:
- Weak ordering (WO)
- Release Consistency (RC)
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Synchronization to the Rescue

▪ Memory reordering seems like a nightmare (it is!)

▪ Every architecture provides synchronization primitives to make memory 
ordering stricter

▪ Fence (memory barrier) instructions prevent reorderings, but are expensive
- All memory operations complete before any memory operation after it can begin

▪ Other synchronization primitives (per address): 
- read-modify-write/compare-and-swap, transactional memory, …

reorderable reads 
and writes here

...

MEMORY FENCE

...

reorderable reads 
and writes here

...

MEMORY FENCE
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Example: expressing synchronization in relaxed models
▪ Intel x86/x64 ~ total store ordering
- Provides sync instructions if software requires a specific instruction ordering not guaranteed by 

the consistency model
- mm_lfence (“load fence”: wait for all loads to complete)

- mm_sfence (“store fence”: wait for all stores to complete)

- mm_mfence (“mem fence”: wait for all me operations to complete)

▪ ARM processors: very relaxed consistency model

A cool post on the role of memory fences in x86:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf

A great list:
http://www.cl.cam.ac.uk/~pes20/weakmemory/

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/
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Problem: Data Races
▪ Every example so far has involved a data race
- Two accesses to the same memory location
- At least one is a write
- Unordered by synchronization operations
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Conflicting data accesses
▪ Two memory accesses by different processors conflict if…

- They access the same memory location
- At least one is a write

▪ Unsynchronized program
- Conflicting accesses not ordered by synchronization (e.g., a fence, operation with release/acquire semantics, 

barrier, etc.)

- Unsynchronized programs contain data races: the output of the program depends on relative speed of processors 
(non-deterministic program results)
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Synchronized programs

▪ Synchronized programs yield SC results on non-SC systems
- Synchronized programs are data-race-free

▪ If there are no data races, reordering behavior doesn’t matter
- Accesses are ordered by synchronization, and synchronization forces sequential 

consistency

▪ In practice, most programs you encounter will be synchronized (via locks, barriers, etc. 
implemented in synchronization libraries)
- Rather than via ad-hoc reads/writes to shared variables like in the example programs
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Summary: relaxed consistency
▪ Motivation: obtain higher performance by allowing reordering of memory operations 

(reordering is not allowed by sequential consistency)
▪ One cost is software complexity: programmer or compiler must correctly insert 

synchronization to ensure certain specific operation orderings when needed
- But in practice complexities encapsulated in libraries that provide intuitive primitives like lock/unlock, barrier 

(or lower level primitives like fence)

- Optimize for the common case: most memory accesses are not conflicting, so don’t design a system that pays 
the cost as if they are

▪ Relaxed consistency models differ in which memory ordering constraints they ignore
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Languages Need Memory Models Too
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Languages Need Memory Models Too

Optimization not visible to programmer
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Languages Need Memory Models Too

Provide a contract to programmers about how their memory 
operations will be reordered by the compiler e.g. no reordering of 

shared memory operations

Optimization is visible to programmer
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Language Level Memory Models

▪ Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee sequential consistency for 
data-race-free programs (“SC for DRF”)
- Compilers will insert the necessary synchronization to cope with the hardware memory model

▪ No guarantees if your program contains data races!
- The intuition is that most programmers would consider a racy program to be buggy

▪ Use a synchronization library!
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Memory Consistency Models Summary

▪ Define the allowed reorderings of memory operations by hardware and compilers

▪ A contract between hardware or compiler and application software

▪ Weak models required for good performance?
- SC can perform well with many more resources

▪ Details of memory model can be hidden in synchronization library
- Requires data race free (DRF) programs
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Implementing Locks
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Warm up: a simple, but incorrect, lock

lock:

unlock:

ld   R0, mem[addr]      // load word into R0
cmp  R0, #0             // compare R0 to 0
bnz  lock               // if nonzero jump to top
st   mem[addr], #1           

st   mem[addr], #0      // store 0 to address          

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X
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Test-and-set based lock

Atomic test-and-set instruction:
ts R0, mem[addr]       // load mem[addr] into R0

// if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts   R0, mem[addr]        // load word into R0      
bnz  R0, lock             // if 0, lock obtained         

st   mem[addr], #0        // store 0 to address          
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Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)

Invalidate line

= thread has lock
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Check your understanding

▪ On the previous slide, what is the duration of time the thread 
running on P1 holds the lock?

▪ At what points in time does P1’s cache contain a valid copy of 
the cache line containing the lock variable?
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Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of 
time to transfer lock (lock holder must 
wait to acquire bus to release)

Not shown: bus contention also slows 
down execution of critical section 

Figure credit: Culler, Singh, and Gupta
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x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)
lock cmpxchg dst, src

if (dst == EAX)
ZF = 1
dst = src

else
ZF = 0
EAX = dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

bool compare_and_swap(int* x, int a, int b) {
if (*x == a) {
*x = b;
return true;

}

return false;
}

Self-check: Can you implement assembly for 
atomic compare-and-swap using cmpxchg?
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Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should 
be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in 

succession with as little traffic as possible
▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost
▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, 
low storage cost (one int), no provisions for fairness       
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Test-and-test-and-set lock
void Lock(int* lock) {
while (1) {

while (*lock != 0);

if (test_and_set(*lock) == 0)
return;

}
}

void Unlock(int* lock) {
*lock = 0;

}

// while another processor has the lock…
// (assume *lock is NOT register allocated)

// when lock is released, try to acquire it         
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Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd
BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock
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Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)
- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)
▪ Still no provisions for fairness
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Additional atomic operations
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Atomic operations provided by CUDA
int   atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int   atomicSub(int* address, int val);

int   atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int   atomicMin(int* address, int val);

int   atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int   atomicCAS(int* address, int compare, int val);

int   atomicAnd(int* address, int val);  // bitwise

int   atomicOr(int* address, int val);   // bitwise

int   atomicXor(int* address, int val);  // bitwise

(omitting additional 64 bit and unsigned int versions)
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Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int new) {

int old = *addr;
*addr = (old == compare) ? new : old;
return old;

}

int atomic_min(int* addr, int x) {
int old = *addr;
int new = min(old, x);
while (atomicCAS(addr, old, new) != old) {

old = *addr;
new = min(old, x);

}
}

What about these operations?
int  atomic_increment(int* addr, int x);   // for signed values of x
void lock(int* addr);
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Load-linked, Store Conditional (LL/SC)
▪ Pair of corresponding instructions (not a single atomic instruction 

like compare-and-swap)
- load_linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn’t been written to since 
corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX
▪ How might LL/SC be implemented on a cache coherent processor?
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Simple Spin Lock with LL/SC
lock: ll reg1, lockvar /* LL lockvar to reg1 */

sc lockvar, reg2 /* SC reg2 into lockvar */
beqz reg2, lock /* if false, start again */
bnzreg1, lock /* if locked, start again */
ret

unlock: st location, #0 /* write 0 to location */
ret

▪ Can do more fancy atomic ops by changing what’s between LL & SC
- But keep it small so SC likely to succeed
- Don’t include instructions that would need to be undone (e.g. stores)

▪ LL/SC are not lock, unlock respectively
- Only guarantee no conflicting write to lock variable between them
- But can use directly to implement simple operations on shared variables
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Loop Parallelism (LLP)
▪ Overwhelming majority of scientific/engineering applications are expressed in 

terms of iterative constructs, that is, loops
- Focus on parallelizing loops

▪ Particular useful approach if starting from an existing program
- Major restructuring is impractical/unnecessary

▪ Goal of exploiting LLP is to evolve the sequential program into a parallel program
- Through transformations that leave the program semantics unchanged

▪ LLP works well for shared address space (e.g. Multicore)

▪ Recall Amdahl’s law and its requirement to minimize a program’s serial fraction
- Using Loop Parallelism exclusively may limit scalability
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Parallel Loops
▪ for (i = 0; i < n; i++) {

A[i] = A[i] + B;

}

▪ for (i = 1; i < n; i++) {

A[i] = A[i-1] + C[i-1]; /* S1 */

B[i] = B[i-1] + A[i]; /* S2 */

}
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Parallel Loops

▪ for (i = 0; i < n; i++) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i];    /* S2 */

}

▪ A[0] = A[0] + B[0];

for (i = 0; i < n-1; i++) {

B[i+1] = C[i] + D[i]; /* S2 */

A[i+1] = A[i+1] + B[i+1]; /* S1 */

}

B[n] = C[n-1] + D[n-1];
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Data Parallelism with  OpenMP

Profs. Olukotun/Zaharia    CS 149  Lecture 9 74

For-loop with independent  iterations For-loop parallelized using
an OpenMP pragma

gcc source.c -fopenmp
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Privatizing Variables

▪ Critical to performance!
▪ OpenMP pragmas:

- Designed to make parallelizing sequential code easier
- Makes copies of “private” variables automatically

- And performs some automatic initialization, too

- Must specify shared/private per-variable in parallel region
- private: Uninitialized private data

- Private variables are undefined on entry and exit of the parallel region
- shared: All-shared data
- threadprivate: “static” private for use across several parallel regions
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Firstprivate/Lastprivate Clauses

▪ firstprivate (list)

- All variables in the list are initialized with the value the original object had before 
entering the parallel region

▪ lastprivate(list)

- The thread that executes the last iteration or section in sequential order updates 
the value of the objects in the list
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Example Private Variables

Profs. Olukotun/Zaharia    CS 149  Lecture 9 77
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for directive Example

78
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Nested Loop Parallelism
#pragma omp parallel for

for(int y=0; y<25; ++y)

{

#pragma omp parallel for

for(int x=0; x<80; ++x)

tick(x,y);

}

#pragma omp parallel for collapse(2) //OpenMP 3.0 (gcc 4.4)

for(int y=0; y<25; ++y)

for(int x=0; x<80; ++x)

tick(x,y);



Stanford CS149, Fall 2020

Multiple Part Parallel Regions
▪ You can also have a “multi-part” parallel region

- Allows easy alternation of serial & parallel parts
- Doesn’t require re-specifying # of threads, etc.

#pragma omp parallel . . .
{
#pragma omp for
. . . Loop here . . .
#pragma omp single
. . . Serial portion here . . .
#pragma omp sections
. . . Sections here . . .
}
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OMP Directives Overheads

81

Parallel for

parallel

for
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“if” Clause

Profs. Olukotun/Zaharia    CS 149  Lecture 9 82

▪ if (scalar expression)
- Only execute in parallel if 

expression evaluates to true
- Otherwise, execute serially

Performance without if clause
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Reductions in OpenMP

▪ May add reduction clause to parallel for pragma

▪ Specify reduction operation and reduction variable

▪ OpenMP takes care of storing partial results in private variables and combining partial results after 
the loop

▪ The reduction clause has this syntax:
reduction (<op> :<variable>)

▪ Operators
- + Sum

- * Product

- &, |, ^ Bitwise and, or , exclusive or
- &&, || Logical and, or

Profs. Olukotun/Zaharia    CS 149  Lecture 9 83
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Example: Numerical Integration

▪ We know mathematically 
that

▪ We can approximate the 
integral as a sum of 
rectangles:
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Sequential Pi Computation

static long num_steps = 100000;
double step;

void main () { 
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
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Loop Parallelized Pi Computation

▪ Notice that we haven’t changed any lines of code, only added 4 lines

▪ Compare to MPI

#include <omp.h>
static long num_steps = 1000000; double step;
#define NUM_THREADS 8

void main (){ 
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

86
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Dynamic Tasking with OpenMP

▪ OpenMP is a mixed bag
- schedule(dynamic, size) is a dynamic equivalent to the static directive
- Master passes off values of iterations to the workers of size size
- Automatically handles dynamic tasking of simple loops

- Otherwise must make your own
- Includes many commonly used cases, unlike static
- Just like pthreads, except must be lock-only
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OpenMP Guided Scheduling

Thread `chunk’

# 
of

 it
er

at
io

ns

• schedule(guided, size)

• Guided scheduling is  a compromise to reduce 
scheduling overhead

• Iteration space is divided up into exponentially 
decreasing chunks

• Final size is usually 1, unless set by the programmer

• Chunks of work are dynamically obtained

• Works quite well provided work per iteration is 
constant – if unknown dynamic is better
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OpenMP Scheduling

CS315A Lecture 3
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Tasking in OpenMP 3.0
▪ Tasking allows parallelization of units of work that are dynamically generated

▪ Provides flexible model for irregular parallelism

▪ #pragma omp task [clause [[,]clause] ...]
- structured-block

▪ Task Synchronization
- C/C++: #pragma omp taskwait
- Current task suspends execution until all children tasks, generated within the 

current task up to this point, are complete
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Fibonacci Example
▪ Default for local variables is firstprivate

int fib ( int n )

{

int x,y;

if ( n < 2 ) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib(n-2);

#pragma omp taskwait

return x+y;;

}
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OpenMP Summary
▪ OpenMP provides a simple  programming model
- Loops or sections
- Incremental parallelism

▪ Targeted at shared memory systems
- Won’t scale easily to large machines
- Easy to create false sharing

▪ Compilers with OpenMP 2.5 support are widely available

▪ OpenMP 3.0 supports tasking
- Supports irregular parallelism
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