
Parallel Computing
Stanford CS149, Fall 2020

Lecture 10:

Cache Coherence

Stanford CS149, Fall 2020

Spark summary
▪ Introduces opaque sequence abstraction (RDD) to encapsulate intermediates of

cluster computations (previously… frameworks like Hadoop/MapReduce stored
intermediates in the file system)

- Observation: “files are a poor abstraction for intermediate variables in large-
scale data-parallel programs”

- RDDs are read-only, and created by deterministic data-parallel operators
- Lineage tracked and used for locality-aware scheduling and fault-tolerance

(allows recomputation of partitions of RDD on failure, rather than restore from
checkpoint *)
- Bulk operations allow overhead of lineage tracking (logging) to be low

▪ Simple, versatile abstraction upon which many domain-specific distributed
computing frameworks are being implemented

- SQL, MLlib, GraphX

- See Apache Spark project: spark.apache.org

* Note that .persist(RELIABLE) allows programmer to request checkpointing in long lineage situations.

http://spark.apache.org/

Stanford CS149, Fall 2020

Caution: “scale out” is not the entire story
▪ Distributed systems designed for cloud execution address many difficult challenges, and

have been instrumental in the explosion of “big-data” computing and large-scale analytics
- Scale-out parallelism to many machines
- Resiliency in the face of failures

- Complexity of managing clusters of machines
▪ But scale out is not the whole story:

Further optimization of the baseline
brought time down to 110s

20 Iterations of Page Rank

[“Scalability! At what COST?” McSherry et al. HotOS 2015]

COST = “Configuration that Outperforms a Single Thread”

Stanford CS149, Fall 2020

Intel Core i7

▪ 30% of the die area is cache

Stanford CS149, Fall 2020

Cache hierarchy of Intel Skylake CPU (2015)

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)
32 KB
8-way set associative, write back
2 x 32B load + 1 x 32B store per clock
4 cycle latency

L2: (private per core)
256 KB
4-way set associative, write back
64B / clock, 12 cycle latency

L3: (per chip)
8 MB, inclusive
16-way set associative
32B / clock per bank
42 cycle latency

64 byte cache line size

Source: Intel 64 and IA-32 Architectures Optimization Reference Manual (June 2016)

Support for:
72 outstanding loads
56 outstanding stores

Caches exploit locality

3 Cs cache miss model

• Cold

• Capacity

• Conflict

Stanford CS149, Fall 2020

Cache design review

▪ Do you know the difference between a write back and a
write-through cache?

▪ What about a write-allocate vs. write-no-allocate cache?

Data (64 bytes on modern Intel processors)

TagLine state

Dirty bit

Let’s say your code executes int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory... it’s not stored in a register)

1 0 0 0

One cache line:

. . .

Byte 0 of line Byte 63 of line

Stanford CS149, Fall 2020

Behavior of write-allocate, write-back cache on a write miss
(uniprocessor case)

Example: processor executes int x = 1;

1. Processor performs write to address that "misses” in cache
2. Cache selects location to place line in cache, if there is a dirty line currently in

this location, the dirty line is written out to memory
3. Cache loads line from memory (“allocates line in cache”)
4. Whole cache line is fetched and 32 bits are updated
5. Cache line is marked as dirty

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2020

Review: Shared address space model (abstraction)
▪ Threads Reading/writing to shared variables

- Inter-thread communication is implicit in memory operations
- Thread 1 stores to X

- Later, thread 2 reads X (and observes update of value by thread 1)

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

▪ This is a natural extension of sequential programming

Stanford CS149, Fall 2020

A shared memory multi-processor
▪ Processors read and write to shared variables

- More precisely: processors issue load and store instructions

▪ A reasonable expectation of memory is:

- Reading a value at address X should return the last value written to address X by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

(A simple view of four processors and their shared address space)

Stanford CS149, Fall 2020

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Stanford CS149, Fall 2020

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Is this a mutual exclusion problem?

Can you fix the problem by adding locks to your program?

NO!
This is a problem created by replicating the data stored at address
X in local caches

How could we fix this problem?

Stanford CS149, Fall 2020

The memory coherence problem
▪ Intuitive behavior for memory system: reading value at address X should

return the last value written to address X by any processor.

▪ Memory coherence problem exists because there is both global storage
(main memory) and per-processor local storage (processor caches)
implementing the abstraction of a single shared address space.

Stanford CS149, Fall 2020

Intuitive expectation of shared memory
▪ Intuitive behavior for memory system: reading value at address X should return the last

value written to address X by any processor.

▪ On a uniprocessor, providing this behavior is fairly simple, since writes typically come
from one source: the processor
- Exception: device I/O via direct memory access (DMA)

Stanford CS149, Fall 2020

Coherence is an issue in a single CPU system

▪ Common solutions:
- CPU writes to shared buffers using uncached stores (e.g., driver code)
- OS support:

- Mark virtual memory pages containing shared buffers as not-cachable
- Explicitly flush pages from cache when I/O completes

▪ In practice, DMA transfers are infrequent compared to CPU loads and stores
(so these heavyweight software solutions are acceptable)

Processor

Network
Card

Interconnect

Memory

Cache

Case 1:
Processor writes to buffer in main memory
Processor tells network card to async send buffer
Problem: network card many transfer stale data if
processor’s writes (reflected in cached copy of data) are
not flushed to memory

Case 2:
Network card receives message
Network card copies message in buffer in main memory
using DMA transfer
Card notifies CPU msg was received, buffer ready to read
Problem: CPU may read stale data if addresses updated
by network card happen to be in cache

Message
Buffer

Consider I/O device performing DMA data transfer

Stanford CS149, Fall 2020

Problems with the intuition
▪ Intuitive behavior: reading value at address X should return the last value written to address X by any processor

▪ What does “last” mean?
- What if two processors write at the same time?
- What if a write by P1 is followed by a read from P2 so close in time that it is impossible to communicate the

occurrence of the write to P2 in time?

▪ In a sequential program, “last” is determined by program order (not time)
- Holds true within one thread of a parallel program
- But we need to come up with a meaningful way to describe order across threads in a parallel program

Stanford CS149, Fall 2020

Definition: Coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for each memory
location, there is a hypothetical serial order of all program operations
(executed by all processors) to the location that is consistent with the results
of execution, and:

1. Memory operations issued by any one processor occur in the order
issued by the processor

2. The value returned by a read is the value written by the last write to
the location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

Stanford CS149, Fall 2020

Implementation: Cache Coherence Invariants
▪ Single-Writer, Multiple-Read (SWMR) Invariant
- For any memory location x, at any given time (epoch):
- there exists only a single processor that may write to x (and can also read it)
- some number of processors that may only read x

▪ Data-Value Invariant (write serialization)
- The value of the memory location at the start of an epoch is the same as the value of

the memory location at the end of its last read-write epoch

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

time

Stanford CS149, Fall 2020

Implementing coherence

▪ Software-based solutions (coarse grain: VM page)
- OS uses page-fault mechanism to propagate writes

- Can be used to implement memory coherence over clusters of workstations

- We won’t discuss these solutions

- Big performance problem: false sharing

▪ Hardware-based solutions (fine grain: cache line)
- “Snooping”-based coherence implementations (today)

- Directory-based coherence implementations (briefly)

Stanford CS149, Fall 2020

Shared caches: coherence made easy
▪ One single cache shared by all processors

- Eliminates problem of replicating state in multiple caches
▪ Obvious scalability problems (since the point of a cache is to be local and fast)

- Interference (conflict misses) / contention due to many clients (destructive)
▪ But shared caches can have benefits:

- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor (constructive)

Processor Processor Processor Processor

Memory I/O

Cache

Interconnect

Stanford CS149, Fall 2020

SUN Niagara 2 (UltraSPARC T2)

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Processor

Crossbar
Switch

Eight cores

Note area of crossbar (CCX):
about same area as one core on chip

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Stanford CS149, Fall 2020

Snooping cache-coherence schemes
▪ Main idea: all coherence-related activity is broadcast to all processors in the system

(more specifically: to the processor’s cache controllers)

▪ Cache controllers monitor (“they snoop”) memory operations, and follow cache
coherence protocol to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller must respond to actions
from “both ends”:

1. LD/ST requests from its local processor

2. Coherence-related activity broadcast over the
chip’s interconnect

Stanford CS149, Fall 2020

Very simple coherence implementation
Let’s assume:

1. Write-through caches

2. Granularity of coherence is cache line

Coherence Protocol:

• Upon write, cache controller broadcasts invalidation
message

• As a result, the next read from other processors will
trigger cache miss

(processor retrieves updated value from memory due to write-through policy)

P0 $ P1 $ mem location XAction

0

P1 load X 0 0 0

P0 load X 0 0

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

Interconnect activity

cache miss for X

cache miss for X

P0 write 100 to X 100 100invalidation for X

P1 load X 100100 100cache miss for X

Stanford CS149, Fall 2020

Write-through policy is inefficient
▪ Every write operation goes out to memory

- Very high bandwidth requirements

▪ Write-back caches absorb most write traffic as cache hits
- Significantly reduces bandwidth requirements

- But now how do we ensure write propagation/serialization?

- This requires more sophisticated coherence protocols

Stanford CS149, Fall 2020

Cache coherence with write-back caches

Cache

Processor
P0

Memory

Cache

. . .

Bus

Processor
P1

X

Write X Read X

▪ Dirty state of cache line now indicates exclusive ownership
- Modified: cache is only cache with a valid copy of line (it can safely be written to)

- Owner: cache is responsible for propagating information to other processors when they attempt to load
it from memory (otherwise a load from another processor will get stale data from memory)

Chronology of
operations on

address X

P0 write

P1 read

What are two important properties of a bus?

Stanford CS149, Fall 2020

Cache Coherence Protocol

▪ The logic we are about to describe is performed by each processor’s cache
controller in response to:
- Loads and stores by the local processor

- Messages from other caches on the bus

▪ If all cache controllers operate according to this described protocol, then
coherence will be maintained
- The caches “cooperate” to ensure coherence is maintained

Stanford CS149, Fall 2020

Invalidation-based write-back protocol
Key ideas:
▪ A line in the “modified” state can be modified without notifying the other

caches

▪ Processor can only write to lines in the modified state
- Need a way to tell other caches that processor wants exclusive access to the line
- We accomplish this by sending all the other caches messages

▪ When cache controller sees a request for modified access to a line it contains
- It must invalidate the line in its cache

Stanford CS149, Fall 2020

Recall cache line state bits

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2020

MSI write-back invalidation protocol
▪ Key tasks of protocol

- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

▪ Three cache line states
- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (S): line valid in one or more caches, memory is up to date
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

▪ Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)

▪ Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory

Stanford CS149, Fall 2020

Cache Coherence Protocol: MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr /

BusRdX
S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action
PrRd Processor

Read
PrWr Processor

Write
BusRd Bus Read

BusRdX Bus Read
Exclusive

BusWB Bus
Writeback

Processor initiated
- - - - Bus initiated

A / B: if action A is observed by cache controller, action B is taken

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2020

A Cache Coherence Example

Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read x S -- -- BusRd Memory
2. P3 read x S -- S BusRd Memory
3. P3 write x I -- M BusRdX Memory
4. P1 read x S -- S BusRd P3’s cache
5. P2 read x S S S BusRd Memory
6. P2 write x I M I BusRdX Memory

▪ Single writer, multiple reader protocol
▪ Why do you need Modified to Shared?
▪ Communication increases memory latency

Stanford CS149, Fall 2020

Breakout: How Does MSI Satisfy Cache Coherence?

1. Single-Writer, Multiple-Read (SWMR) Invariant
- Only one cache can be in M-state all others get invalidation message
- Multiple caches can be in read-only S-state

2. Data-Value Invariant (write serialization)
- On BusRd and BusRdx data is provided by cache with line in M-state
- Bus serializes all transactions

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

time

Stanford CS149, Fall 2020

Summary: MSI
▪ A line in the M state can be modified without notifying other caches

- No other caches have the line resident, so other processors cannot read these values
- (without generating a memory read transaction)

▪ Processor can only write to lines in the M state
- If processor performs a write to a line that is not exclusive in cache, cache controller must first broadcast a read-exclusive

transaction to move the line into that state
- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I’m going to write”)

- Read-exclusive transaction is required even if line is valid (but not exclusive… it’s in the S state) in processor’s local cache (why?)

- Dirty state implies exclusive

▪ When cache controller snoops a “read exclusive” for a line it contains
- Must invalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

Stanford CS149, Fall 2020

MESI invalidation protocol

▪ This inefficiency exists even if application has no sharing at all

▪ Solution: add additional state E (“exclusive clean”)
- Line has not been modified, but only this cache has a copy of the line

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

MESI, not Messi!

▪ MSI requires two interconnect transactions for the
common case of reading an address, then writing to it
- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

Stanford CS149, Fall 2020

MESI state transition diagram

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / BusWB

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / BusWB

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Stanford CS149, Fall 2020

Two Hard Things

There are only two hard things in Computer Science: cache
invalidation and naming things.

-- Phil Karlton

Stanford CS149, Fall 2020

Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to determine the state of a line in

the other caches
▪ Alternative idea: avoid broadcast by storing information about the status of the

line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis
(not by broadcast mechanisms)

▪ Still need to maintain invariants
- SWMR

- Write serialization

Stanford CS149, Fall 2020

Directory coherence in Intel Core i7 CPU

▪ L3 serves as centralized directory for all lines in the L3
cache
- Serialization piont

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

▪ Directory maintains list of L2 caches containing line
▪ Instead of broadcasting coherence traffic to all L2’s, only

send coherence messages to L2’s that contain the line

(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Stanford CS149, Fall 2020

Implications of cache coherence
to the programmer

Stanford CS149, Fall 2020

Communication Overhead

▪ Communication time is key parallel overhead
- Appears as increased memory latency in multiprocessor
- Extra main memory accesses in UMA systems
- Must determine lowering of cache miss rate vs. uniprocessor

- Some accesses have higher latency in NUMA systems
- Only a fraction of a % of these can be significant!

Register, < 1ns

L1 Cache, ~ 1ns

L2 Cache, ~ 3-10ns

Main Memory, ~ 50-100ns

Remote, ~ 300-1000ns

Register, less register alloc.

L1 Cache, lower hit rate

L2 Cache, lower hit rate

Main, can “miss” in NUMA

Remote, extra long delays

Uniprocessor Multiprocessor

Stanford CS149, Fall 2020

Unintended communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford CS149, Fall 2020

Demo: false sharing
void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with num_threads=8
on 4-core system: 14.2 sec

Execution time with num_threads=8
on 4-core system: 4.7 sec

threads update a per-thread counter many times

Stanford CS149, Fall 2020

False sharing
▪ Condition where two processors write to different addresses, but

addresses map to the same cache line

▪ Cache line “ping-pongs” between caches of writing processors,
generating significant amounts of communication due to the
coherence protocol

▪ No inherent communication, this is entirely artifactual
communication (cachelines > 4B)

▪ False sharing can be a factor in when programming for cache-
coherent architectures

P1 P2

Cache line

Stanford CS149, Fall 2020

Impact of cache line size on miss rate
M

iss
 R

at
e %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 R
at

e %

12

10

8

6

4

2

0

Upgrade

False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

Stanford CS149, Fall 2020

Summary: Cache coherence
▪ The cache coherence problem exists because the abstraction of a single shared address space is

not implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

▪ Main idea of snooping-based cache coherence: whenever a cache operation occurs that could
affect coherence, the cache controller broadcasts a notification to all other cache controllers in
the system
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.g., false

sharing)

▪ Scalability of snooping implementations is limited by ability to broadcast coherence messages
to all caches!
- Scaling cache coherence via directory-based approaches

