
Parallel Computing
Stanford CS149, Fall 2020

Lecture 2:

A Modern Multi-Core
Processor

(Forms of parallelism + understanding latency and bandwidth)

Stanford CS149, Fall 2020

Quick review

1. Why has single-instruction-stream performance only improved
very slowly in recent years? *

2. What prevented us from obtaining maximum speedup from the
parallel programs we wrote last time?

* Self check 1: What do I mean by “single-instruction stream”?

 Self check 2: When we talked about the optimization of superscalar execution, were we talking about
 optimizing the performance of executing a single-instruction stream or multiple
 instruction streams?

Stanford CS149, Fall 2020

Quick review
What does it mean for a superscalar processor to “respect program order”?

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
 print tmp3
else
 print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

Stanford CS149, Fall 2020

Today
▪ Today we will talk computer architecture

▪ Four key concepts about how modern computers work
- Two concern parallel execution

- Two concern challenges of accessing memory

▪ Understanding these architecture basics will help you
- Understand and optimize the performance of your parallel programs

- Gain intuition about what workloads might benefit from fast parallel machines

Stanford CS149, Fall 2020

Part 1: parallel execution

Stanford CS149, Fall 2020

Example program

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...
for each element of an array of N floating-point numbers

Stanford CS149, Fall 2020

Compile program

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

Stanford CS149, Fall 2020

Execute program

x[i]

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

Execution Unit
(ALU)

Stanford CS149, Fall 2020

Execute program

x[i]

Fetch/
Decode

Execution
Context

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

Execution Unit
(ALU)

Stanford CS149, Fall 2020

Execute program

x[i]

Fetch/
Decode

Execution
Context

Execution Unit
(ALU)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

Stanford CS149, Fall 2020

Execute program

x[i]

Fetch/
Decode

Execution
Context

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

Execution Unit
(ALU)

Stanford CS149, Fall 2020

Superscalar processor

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

Fetch/
Decode

1

Execution
Context

Exec
1

Recall from last class: instruction level parallelism (ILP)
Decode and execute two instructions per clock (if possible)

Fetch/
Decode

2

Exec
2

Note: No ILP exists in this region of the program
result[i]

Out-of-order control logic

Stanford CS149, Fall 2020

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

Stanford CS149, Fall 2020

Processor: pre multi-core era

Fetch/
Decode

Execution
Context

Exec Unit
(ALU)

Data cache
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations
that help a single instruction stream run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

(Also: more transistors → smaller transistors → higher clock frequencies)

Fetch/
Decode

Exec Unit
(ALU)

Stanford CS149, Fall 2020

Processor: multi-core era

Fetch/
Decode

Execution
Context

Exec Unit
(ALU)

Idea #1:

Use increasing transistor count to add more
cores to the processor

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream
(e.g., out-of-order and speculative operations)

Stanford CS149, Fall 2020

Two cores: compute two elements in parallel

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...

...
st addr[r2], r0

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...

...
st addr[r2], r0

Simpler cores: each core is slower at running a single instruction stream
than our original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 × 0.75 = 1.5 (potential for speedup!)

result[j]

x[j]

result[i]

x[i]

Stanford CS149, Fall 2020

But our program expresses no parallelism
void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

This C program, compiled with gcc
will run as one thread on one of
the processor cores.

If each of the simpler processor
cores was 25% slower than the
original single complicated one,
our program now runs 25%
slower. :-(

Stanford CS149, Fall 2020

Expressing parallelism using pthreads
void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

typedef struct {

 int N;

 int terms;

 float* x;

 float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

 pthread_t thread_id;

 my_args args;

 args.N = N/2;

 args.terms = terms;

 args.x = x;

 args.result = result;

 pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

 sinx(N - args.N, terms, x + args.N, result + args.N); // do work

 pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

 my_args* thread_args = (my_args*)thread_arg;

 sinx(args->N, args->terms, args->x, args->result); // do work

}

Stanford CS149, Fall 2020

Data-parallel expression
void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Loop iterations declared by the
programmer to be independent

With this information, you could imagine
how a compiler might automatically
generate parallel threaded code

(in Kayvon’s fictitious data-parallel language)

Stanford CS149, Fall 2020

Four cores: compute four elements in parallel

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

Stanford CS149, Fall 2020

Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction streams

Stanford CS149, Fall 2020

Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU
(2015)

NVIDIA GP104 (GTX 1080) GPU
20 replicated (“SM”) cores

(2016)

Core 4

Shared L3 cache

Core 2

Core 3

Stanford CS149, Fall 2020

More multi-core examples

Intel Xeon Phi “Knights Corner“ 72-core CPU
(2016)

Apple A13: two “big” cores
+ four ”small” cores

(2019)

Core 1

Core 2

A13 Image Credit: Anandtech / TechInsights Inc.

Stanford CS149, Fall 2020

Data-parallel expression
void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Another interesting property of this code:

Parallelism is across iterations of the loop.

All the iterations of the loop carry out the
exact same sequence of instructions, but
on different input data
(to compute the sine of the input number)

(in Kayvon’s fictitious data-parallel language)

Stanford CS149, Fall 2020

Add ALUs to increase compute capability

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

Stanford CS149, Fall 2020

Add ALUs to increase compute capability

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Recall original compiled program:

Instruction stream processes one array element
at a time using scalar instructions on scalar
registers (e.g., 32-bit floats)

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

Stanford CS149, Fall 2020

Scalar program

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Original compiled program:

Processes one array element using scalar
instructions on scalar registers (e.g., 32-bit floats)

Stanford CS149, Fall 2020

Vector program (using AVX intrinsics)
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

 float three_fact = 6; // 3!

 for (int i=0; i<N; i+=8)

 {

 __m256 origx = _mm256_load_ps(&x[i]);

 __m256 value = origx;

 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

 __m256 denom = _mm256_broadcast_ss(&three_fact);

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 // value += sign * numer / denom

 __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

 value = _mm256_add_ps(value, tmp);

 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

 sign *= -1;

 }

 _mm256_store_ps(&result[i], value);

 }

}

Intrinsics available to C programmers

Operate on vectors of eight 32-bit values

Stanford CS149, Fall 2020

Vector program (using AVX intrinsics)

vloadps xmm0, addr[r1]

vmulps xmm1, xmm0, xmm0

vmulps xmm1, xmm1, xmm0
...
...
...
...
...

...
vstoreps addr[xmm2], xmm0

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector registers

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

 float three_fact = 6; // 3!

 for (int i=0; i<N; i+=8)

 {

 __m256 origx = _mm256_load_ps(&x[i]);

 __m256 value = origx;

 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

 __m256 denom = _mm256_broadcast_ss(&three_fact);

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 // value += sign * numer / denom

 __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

 value = _mm256_add_ps(value, tmp);

 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

 sign *= -1;

 }

 _mm256_store_ps(&result[i], value);

 }

}

Stanford CS149, Fall 2020

16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

Stanford CS149, Fall 2020

Data-parallel expression
void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Compiler understands loop iterations
are independent, and that same loop
body will be executed on a large
number of data elements.

Abstraction facilitates automatic
generation of both multi-core parallel
code, and vector instructions to make
use of SIMD processing capabilities
within a core.

(in Kayvon’s fictitious data-parallel language)

Stanford CS149, Fall 2020

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

Stanford CS149, Fall 2020

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

T T T F FF F F
float x = A[i];

result[i] = x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

Stanford CS149, Fall 2020

Mask (discard) output of ALU

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

Stanford CS149, Fall 2020

After branch: continue at full performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

Stanford CS149, Fall 2020

Terminology
▪ Instruction stream coherence (“coherent execution”)

- Property of a program where the same instruction sequence applies to many
data elements

- Coherent execution is necessary for efficient use of SIMD processing resources

- Coherent execution IS NOT necessary for efficient parallelization across cores,
since each core has the capability to fetch/decode a different instruction stream

▪ “Divergent” execution
- A lack of instruction stream coherence

▪ Note: don’t confuse instruction stream coherence with “cache
coherence” (a major topic later in the course)

Stanford CS149, Fall 2020

SIMD execution on modern CPUs
▪ AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)

▪ AVX512 instruction: 512 bit operations: 16x32 bits…

▪ Instructions are generated by the compiler

- Parallelism explicitly requested by programmer using intrinsics

- Parallelism conveyed using parallel language semantics (e.g., forall example)

- Parallelism inferred by dependency analysis of loops (hard problem, even best
compilers are not great on arbitrary C/C++ code)

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time

- Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)

Stanford CS149, Fall 2020

SIMD execution on many modern GPUs

▪ “Implicit SIMD”

- Compiler generates a scalar binary (scalar instructions)

- But N instances of the program are *always run* together on the processor
execute(my_function, N) // execute my_function N times

- In other words, the interface to the hardware itself is data parallel

- Hardware (not compiler) is responsible for simultaneously executing the same
instruction from multiple instances on different data on SIMD ALUs

▪ SIMD width of most modern GPUs ranges from 8 to 32
- Divergence can be a big issue

(poorly written code might execute at 1/32 the peak capability of the machine!)

TL;DR — ask me more in office hours (or in online comments)

Stanford CS149, Fall 2020

Example: four-core Intel i7-7700K CPU

4 cores
8 SIMD ALUs per core
(AVX2 instructions)

268 GFLOPs (@4.2 GHz)
(91 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

(in myth cluster)

(Kaby Lake)

4 cores x 8-wide SIMD x (mul+add) x 4.2 GHz = 268 GFLOPs

Stanford CS149, Fall 2020

Example: NVIDIA GTX 1080

20 cores (“SMs”)
128 SIMD ALUs per “SM” (@1.6 GHz) = 8.1 TFLOPs (180 Watts)

Stanford CS149, Fall 2020

Summary: parallel execution
▪ Several forms of parallel execution in modern processors

- Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different
instruction stream on each core

- Software decides when to create threads (e.g., via pthreads API)

- SIMD: multiple ALUs controlled by same instruction stream (within a core)

- Efficient design for data-parallel workloads: control amortized over many ALUs

- Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware

- [Lack of] dependencies is known prior to execution (usually declared by programmer,
but can be inferred by loop analysis by advanced compiler)

- Superscalar: exploit ILP within an instruction stream. Process different instructions from
the same instruction stream in parallel (within a core)

- Parallelism automatically and dynamically discovered by the hardware during
execution (not programmer visible)
Not addressed further in this class. That’s for a proper computer architecture course.

Stanford CS149, Fall 2020

Part 2: accessing memory

Memory

Stanford CS149, Fall 2020

Terminology
▪ Memory latency

- The amount of time for a memory request (e.g., load, store) from a
processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

▪ Memory bandwidth
- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Stanford CS149, Fall 2020

Stalls
▪ A processor “stalls” when it cannot run the next instruction in

an instruction stream because of a dependency on a previous
instruction.

▪ Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

▪ Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and
mem[r3] have been loaded from memory

Stanford CS149, Fall 2020

Review: why do modern processors have caches?

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS149, Fall 2020

Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS149, Fall 2020

Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (cycles at 4GHz)

(Kaby Lake CPU)

Stanford CS149, Fall 2020

Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches

- Dynamically analyze program’s access patterns, predict what it will access soon

▪ Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

...

...

...

...

...

...

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce
performance if the guess is wrong
(consumes bandwidth, pollutes caches)

(more detail later in course)

These loads are cache hits

Stanford CS149, Fall 2020

Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same

core to hide stalls

▪ Like prefetching, multi-threading is a latency hiding
technique, not a latency reducing technique like caches

Stanford CS149, Fall 2020

Doing your laundry

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry

Stanford CS149, Fall 2020

Hiding stalls with multi-threading

Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

Stanford CS149, Fall 2020

Hiding stalls with multi-threading

Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Stanford CS149, Fall 2020

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS149, Fall 2020

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable

Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS149, Fall 2020

Throughput computing trade-off

Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase time to complete work by any
one thread, in order to increase overall system
throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed
by the processor. (The core is running some other thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS149, Fall 2020

Storing execution contexts

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage
(or L1 cache)

Consider on-chip storage of execution contexts a finite resource.

Stanford CS149, Fall 2020

Many small contexts (high latency hiding ability)
1 core

(16 hardware threads, storage for small working set per thread)
Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Stanford CS149, Fall 2020

Four large contexts (low latency hiding ability)

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

1 core
(4 hardware threads, storage for larger working set per thread)

Stanford CS149, Fall 2020

Hardware-supported multi-threading
▪ Core manages execution contexts for multiple threads

- Runs instructions from runnable threads (processor makes decision about which
thread to run each clock, not the operating system)

- Core still has the same number of ALU resources: multi-threading only helps use
them more efficiently in the face of high-latency operations like memory access

▪ Interleaved multi-threading (a.k.a. temporal multi-threading)
- What I described on the previous slides: each clock, the core chooses a thread,

and runs an instruction from the thread on the ALUs

▪ Simultaneous multi-threading (SMT)
- Each clock, core chooses instructions from multiple threads to run on ALUs
- Extension of superscalar CPU design
- Example: Intel Hyper-threading (2 threads per core)

Stanford CS149, Fall 2020

Multi-threading summary
▪ Benefit: use a core’s execution resources (ALUs) more efficiently

- Hide memory latency

- Fill multiple functional units of superscalar architecture
(when one thread has insufficient ILP)

▪ Costs
- Requires additional storage for thread contexts

- Increases run time of any single thread
(often not a problem, we usually care about throughput in parallel apps)

- Requires additional independent work in a program (more independent work
than ALUs!)

- Relies heavily on memory bandwidth
- More threads → larger working set → less cache space per thread
- May go to memory more often, but can hide the latency

Stanford CS149, Fall 2020

Kayvon’s fictitious multi-core chip
16 cores

8 SIMD ALUs per core

(128 total)

4 threads per core

16 simultaneous
instruction streams

64 total concurrent
instruction streams

512 independent pieces of
work are needed to run chip
with maximal latency
hiding ability

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

Stanford CS149, Fall 2020

= SIMD function unit,
 control shared across 32 units
(1 MUL-ADD per clock)

“Shared” memory
(96 KB)

Execution contexts (registers)
(256 KB)

▪ Instructions operate on 32 pieces of
data at a time (instruction streams
called “warps”).

▪ Think: warp = thread issuing 32-wide
vector instructions

▪ Different instructions from up to four
warps can be executed simultaneously
(simultaneous multi-threading)

▪ Up to 64 warps are interleaved on the
SM (interleaved multi-threading)

▪ Over 2,048 elements can be processed
concurrently by a core

NVIDIA GTX 1080 core (“SM”)

GPUs: extreme throughput-oriented processors

Source: NVIDIA Pascal Tuning Guide

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Stanford CS149, Fall 2020

NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080:
That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!

Stanford CS149, Fall 2020

CPU vs. GPU memory hierarchies
76 GB/sec

L3 cache
(20 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Many GB)

Core 1

Core 8

L1 cache
(32 KB)

L2 cache
(256 KB)

CPU:
Big caches, few threads per core, modest memory BW
Rely mainly on caches and prefetching

GPU:
Small caches, many threads, huge memory BW
Rely heavily on multi-threading for performance

Execution
contexts
(256 KB)

L1 cache

Scratchpad
(64 KB)

. . .

Execution
contexts
(256 KB)

L1 cache

Scratchpad
(64 KB)

. . .

Core 1

Core 20

L2 cache
(2 MB)

320 GB/sec Memory
DDR5 DRAM

(a few GB)

Stanford CS149, Fall 2020

Thought experiment
Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

=

A

B

C

×

<1% GPU efficiency… but 4.2x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3%
efficiency on this computation)

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)
Need ~45 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)

Stanford CS149, Fall 2020

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

Stanford CS149, Fall 2020

Bandwidth is a critical resource

Performant parallel programs will:

▪ Organize computation to fetch data from memory less often
- Reuse data previously loaded by the same thread

(traditional intra-thread temporal locality optimizations)
- Share data across threads (inter-thread cooperation)

▪ Request data less often (instead, do more arithmetic: it’s “free”)
- Useful term: “arithmetic intensity” — ratio of math operations to data

access operations in an instruction stream
- Main point: programs must have high arithmetic intensity to utilize

modern processors efficiently

Stanford CS149, Fall 2020

Summary
▪ Three major ideas that all modern processors employ to varying degrees

- Provide multiple processing cores
- Simpler cores (embrace thread-level parallelism over instruction-level parallelism)

- Amortize instruction stream processing over many ALUs (SIMD)
- Increase compute capability with little extra cost

- Use multi-threading to make more efficient use of processing
resources (hide latencies, fill all available resources)

▪ Due to high arithmetic capability on modern chips, many parallel
applications (on both CPUs and GPUs) are bandwidth bound

▪ GPU architectures use the same throughput computing ideas as CPUs:
but GPUs push these concepts to extreme scales

Stanford CS149, Fall 2020

For the rest of this class, know these terms
▪ Instruction stream

▪ Multi-core processor

▪ SIMD execution

▪ Coherent control flow

▪ Hardware multi-threading
- Interleaved multi-threading
- Simultaneous multi-threading

▪ Memory latency

▪ Memory bandwidth

▪ Bandwidth bound application

▪ Arithmetic intensity

Stanford CS149, Fall 2020

Review slides
(additional examples for review and to check our understanding)

Stanford CS149, Fall 2020

Putting together the concepts from this lecture:
(if you understand the following sequence you understand this lecture)

Stanford CS149, Fall 2020

Running code on a simple processor

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

My very simple program:
compute sin(x) using Taylor expansion

Fetch/
Decode

Execution
Context

ALU
(Execute)

My very simple processor:
completes one instruction per clock

Stanford CS149, Fall 2020

Review: superscalar execution

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Unmodified program

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the processor
at run-time and may be executed in
parallel on execution units 1 and 2)

Stanford CS149, Fall 2020

Review: multi-core execution (two cores)
Modify program to create two threads of

control (two instruction streams)

My dual-core processor:
executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

typedef struct {

 int N;

 int terms;

 float* x;

 float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

 pthread_t thread_id;

 my_args args;

 args.N = N/2;

 args.terms = terms;

 args.x = x;

 args.result = result;

 pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

 sinx(N - args.N, terms, x + args.N, result + args.N); // do work

 pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

 my_args* thread_args = (my_args*)thread_arg;

 sinx(args->N, args->terms, args->x, args->result); // do work

}

Stanford CS149, Fall 2020

Review: multi-core + superscalar execution
Modify program to create two threads of

control (two instruction streams)
My superscalar dual-core processor:

executes up to two instructions per clock
from an instruction stream on each core.

Execution
Context

typedef struct {

 int N;

 int terms;

 float* x;

 float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

 pthread_t thread_id;

 my_args args;

 args.N = N/2;

 args.terms = terms;

 args.x = x;

 args.result = result;

 pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

 sinx(N - args.N, terms, x + args.N, result + args.N); // do work

 pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

 my_args* thread_args = (my_args*)thread_arg;

 sinx(args->N, args->terms, args->x, args->result); // do work

}

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Execution
Context

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Stanford CS149, Fall 2020

Review: multi-core (four cores)
Modify program to create many threads of control:

recall Kayvon’s fictitious language
My quad-core processor:

executes one instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Stanford CS149, Fall 2020

Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body.
Optimization: share instruction stream across execution of multiple
iterations (single instruction multiple data = SIMD) My SIMD quad-core processor:

executes one 8-wide SIMD instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Stanford CS149, Fall 2020

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency
Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations

void sinx(int N, int terms, float* x, float* result)

{

 // declare independent loop iterations

 forall (int i from 0 to N-1)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Fetch/
DecodeMemory load

Memory store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:
executes one SIMD instruction per clock

from one instruction stream on each core. But
can switch to processing the other instruction

stream when faced with a stall.

Stanford CS149, Fall 2020

Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:
executes up to two instructions per clock from one instruction stream on each core

(in this example: one SIMD instruction + one scalar instruction).
Processor can switch to execute the other instruction stream when faced with stall.

Stanford CS149, Fall 2020

Connecting it all together
Kayvon’s simple quad-core processor:

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two
instructions per clock per core (one of those instructions is 8-wide SIMD)

Stanford CS149, Fall 2020

Thought experiment
▪ You write a C application that spawns two pthreads

▪ The application runs on the processor shown below
- Two cores, two-execution contexts per core, up to instructions per clock, one

instruction is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s pthreads
to the processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were implementing the OS, how would to assign the two
threads to the four execution contexts?

▪ Another question: How would you
assign threads to execution contexts
if your C program spawned five
pthreads?

Stanford CS149, Fall 2020

Visualizing interleaved and
simultaneous multi-threading

(and combinations thereof)

Stanford CS149, Fall 2020

Interleaved multi-threading

Thread 0

Thread 1

Consider a processor with:
▪ Two execution contexts
▪ One fetch and decode unit (one instruction per clock)
▪ One ALU (to execute the instruction)

time (clocks)

In an interleaved multi-threading scenario, the threads share the processor.

= ALU executing T0 at this time

= ALU executing T1 at this time

(This is a visualization of when threads are having their instructions executed by the ALU.)

Stanford CS149, Fall 2020

Interleaved multi-threading

Thread 0

Thread 1

Consider a processor with:
▪ Two execution contexts
▪ One fetch and decode unit (one instruction per clock)
▪ One ALU (to execute the instruction)

time (clocks)

Same as previous slide, but now just a different scheduling order of the threads
(fine-grained interleaving)

= ALU executing T0 at this time

= ALU executing T1 at this time

Stanford CS149, Fall 2020

Simultaneous multi-threading

Thread 0

Thread 1

Consider a processor with:
▪ Two execution contexts
▪ Two fetch and decode units (two instructions per clock)
▪ Two ALUs (to execute the two instructions)

time (clocks)

In an simultaneous multi-threading scenario, the threads execute simultaneously on
the two ALUs. (note, no ILP in a thread is necessary since each thread is run sequentially
on one ALU)

= ALU executing T0 at this time

= ALU executing T1 at this time

Stanford CS149, Fall 2020

Combining simultaneous and interleaved multi-threading

Thread 0

Thread 1

Consider a processor with:
▪ Four execution contexts
▪ Two fetch and decode units (two instructions per clock, choose two of four threads)
▪ Two ALUs (to execute the two instructions)

time (clocks)

Thread 2

Thread 3

= some ALU executing T0 at this time

= some ALU executing T1 at this time

= some ALU executing T2 at this time

= some ALU executing T3 at this time

Stanford CS149, Fall 2020

Another way to visualize execution (ALU-centric view)

ALU 0

ALU 1

Consider a processor with:
▪ Four execution contexts
▪ Two fetch and decode units (two instructions per clock, choose two of four threads)
▪ Two ALUs (to execute the two instructions)

time (clocks)

= executing T0 at this time

= executing T1 at this time

= executing T2 at this time

= executing T3 at this time

Now the graph is visualizing what each ALU is doing each clock:

Stanford CS149, Fall 2020

Instructions can be drawn from same thread (ILP)

ALU 0

ALU 1

Consider a processor with:
▪ Four execution contexts
▪ Two fetch and decode units (two instructions per clock, choose any two

independent instructions from the four threads)
▪ Two ALUs (to execute the two instructions)

time (clocks)

= executing T0 at this time

= executing T1 at this time

= executing T2 at this time

= executing T3 at this time

Two instructions from same thread executing simultaneously.

