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Quick review

1. Why has single-instruction-stream performance only improved 
very slowly in recent years?  * 

2. What prevented us from obtaining maximum speedup from the 
parallel programs we wrote last time?

* Self check 1:  What do I mean by “single-instruction stream”? 

   Self check 2:  When we talked about the optimization of superscalar execution, were we talking about  
                                optimizing the performance of executing a single-instruction stream or multiple          
                                instruction streams?
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Quick review
What does it mean for a superscalar processor to “respect program order”?

a = 2 
b = 4 

tmp2 = a + b        // 6 
tmp3 = tmp2 + a     // 8 
tmp4 = b + b        // 8 
tmp5 = b * b        // 16 
tmp6 = tmp2 + tmp4  // 14 
tmp7 = tmp5 + tmp6  // 30 

if (tmp3 > 7)        
  print tmp3 
else 
  print tmp7 
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Today
▪ Today we will talk computer architecture 

▪ Four key concepts about how modern computers work 
- Two concern parallel execution 

- Two concern challenges of accessing memory 

▪ Understanding these architecture basics will help you 
- Understand and optimize the performance of your parallel programs 

- Gain intuition about what workloads might benefit from fast parallel machines
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Part 1: parallel execution
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Example program

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N floating-point numbers
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Compile program

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

result[i]
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

result[i]

Execution Unit 
(ALU)
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

result[i]

Execution Unit 
(ALU)
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

Execution Unit 
(ALU)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

result[i]
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

result[i]

Execution Unit 
(ALU)
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Superscalar processor

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

Fetch/ 
Decode 

1

Execution 
Context

Exec 
1

Recall from last class: instruction level parallelism (ILP) 
Decode and execute two instructions per clock (if possible)

Fetch/ 
Decode 

2

Exec 
2

Note: No ILP exists in this region of the program
result[i]

Out-of-order control logic
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Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html
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Processor: pre multi-core era

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Data cache 
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations 
that help a single instruction stream run fast 

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc. 

(Also: more transistors → smaller transistors → higher clock frequencies)

Fetch/ 
Decode

Exec Unit 
(ALU)
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Processor: multi-core era

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Idea #1: 

Use increasing transistor count to add more 
cores to the processor 

Rather than use transistors to increase 
sophistication of processor logic that 
accelerates a single instruction stream 
(e.g., out-of-order and speculative operations) 
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Two cores: compute two elements in parallel 

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

Simpler cores: each core is slower at running a single instruction stream 
than our original “fancy” core (e.g., 25% slower)

But there are now two cores:  2 × 0.75 = 1.5        (potential for speedup!) 

result[j]

x[j]

result[i]

x[i]



Stanford CS149, Fall 2020

But our program expresses no parallelism
void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

This C program, compiled with gcc 
will run as one thread on one of 
the processor cores. 

If each of the simpler processor 
cores was 25% slower than the 
original single complicated one, 
our program now runs 25% 
slower.  :-(
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Expressing parallelism using pthreads
void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

typedef struct { 

   int N; 

   int terms; 

   float* x; 

   float* result; 

} my_args; 

void parallel_sinx(int N, int terms, float* x, float* result) 

{ 

    pthread_t thread_id; 

    my_args args; 

    args.N = N/2; 

    args.terms = terms; 

    args.x = x; 

    args.result = result; 

    pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread   

    sinx(N - args.N, terms, x + args.N, result + args.N); // do work 

    pthread_join(thread_id, NULL); 

} 

void my_thread_start(void* thread_arg) 

{ 

   my_args* thread_args = (my_args*)thread_arg; 

   sinx(args->N, args->terms, args->x, args->result); // do work 

}
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Data-parallel expression
void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1)  

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Loop iterations declared by the 
programmer to be independent 

With this information, you could imagine 
how a compiler might automatically 
generate parallel threaded code

(in Kayvon’s fictitious data-parallel language)
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Four cores: compute four elements in parallel 

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)
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Sixteen cores: compute sixteen elements in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU 
(2015)

NVIDIA GP104 (GTX 1080) GPU 
20 replicated (“SM”) cores 

(2016)

Core 4

Shared L3 cache

Core 2

Core 3
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More multi-core examples

Intel Xeon Phi “Knights Corner“ 72-core CPU 
(2016)

Apple A13: two “big” cores 
+ four ”small” cores 

(2019)

Core 1

Core 2

A13 Image Credit: Anandtech / TechInsights Inc.
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Data-parallel expression
void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1)  

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Another interesting property of this code: 

Parallelism is across iterations of the loop. 

All the iterations of the loop carry out the 
exact same sequence of instructions, but 
on different input data 
(to compute the sine of the input number)

(in Kayvon’s fictitious data-parallel language)
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Add ALUs to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
Executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Add ALUs to increase compute capability

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Recall original compiled program: 

Instruction stream processes one array element 
at a time using scalar instructions on scalar 
registers (e.g., 32-bit floats)

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Scalar program

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Original compiled program: 

Processes one array element using scalar 
instructions on scalar registers (e.g., 32-bit floats)
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Vector program (using AVX intrinsics)
#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* result) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&result[i], value); 

   } 

}

Intrinsics available to C programmers

Operate on vectors of eight 32-bit values



Stanford CS149, Fall 2020

Vector program (using AVX intrinsics)

vloadps  xmm0, addr[r1] 

vmulps   xmm1, xmm0, xmm0 

vmulps   xmm1, xmm1, xmm0 
... 
... 
... 
... 
... 

... 
vstoreps  addr[xmm2], xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector 
instructions on 256-bit vector registers 

#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* result) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&result[i], value); 

   } 

}
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression
void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Compiler understands loop iterations 
are independent, and that same loop 
body will be executed on a large 
number of data elements. 

Abstraction facilitates automatic 
generation of both multi-core parallel 
code, and vector instructions to make 
use of SIMD processing capabilities 
within a core.

(in Kayvon’s fictitious data-parallel language)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

T T T F FF F F
float x = A[i];

result[i] = x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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Mask (discard) output of ALU 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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After branch: continue at full performance 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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Terminology
▪ Instruction stream coherence (“coherent execution”) 

- Property of a program where the same instruction sequence applies to many 
data elements 

- Coherent execution is necessary for efficient use of SIMD processing resources 

- Coherent execution IS NOT necessary for efficient parallelization across cores, 
since each core has the capability to fetch/decode a different instruction stream 

▪ “Divergent” execution 
- A lack of instruction stream coherence 

▪ Note: don’t confuse instruction stream coherence with “cache 
coherence”  (a major topic later in the course)
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SIMD execution on modern CPUs
▪ AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors) 

▪ AVX512 instruction: 512 bit operations: 16x32 bits… 

▪ Instructions are generated by the compiler 

- Parallelism explicitly requested by programmer using intrinsics 

- Parallelism conveyed using parallel language semantics (e.g., forall example) 

- Parallelism inferred by dependency analysis of loops (hard problem, even best 
compilers are not great on arbitrary C/C++ code)  

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time 

- Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)
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SIMD execution on many modern GPUs

▪ “Implicit SIMD” 

- Compiler generates a scalar binary (scalar instructions) 

- But N instances of the program are *always run* together on the processor     
execute(my_function, N)  // execute my_function N times 

- In other words, the interface to the hardware itself is data parallel 

- Hardware (not compiler) is responsible for simultaneously executing the same 
instruction from multiple instances on different data on SIMD ALUs 

▪ SIMD width of most modern GPUs ranges from 8 to 32  
- Divergence can be a big issue 

(poorly written code might execute at 1/32 the peak capability of the machine!)

TL;DR — ask me more in office hours (or in online comments)
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Example: four-core Intel i7-7700K CPU

4 cores 
8 SIMD ALUs per core 
(AVX2 instructions)

268 GFLOPs (@4.2 GHz) 
(91 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

(in myth cluster)

(Kaby Lake)

4 cores x 8-wide SIMD x (mul+add) x 4.2 GHz = 268 GFLOPs
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Example: NVIDIA GTX 1080

20 cores (“SMs”) 
128 SIMD ALUs per “SM” (@1.6 GHz) = 8.1 TFLOPs  (180 Watts)
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Summary: parallel execution
▪ Several forms of parallel execution in modern processors 

- Multi-core: use multiple processing cores 

- Provides thread-level parallelism: simultaneously execute a completely different 
instruction stream on each core 

- Software decides when to create threads (e.g., via pthreads API) 

- SIMD: multiple ALUs controlled by same instruction stream (within a core) 

- Efficient design for data-parallel workloads: control amortized over many ALUs 

- Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware  

- [Lack of] dependencies is known prior to execution (usually declared by programmer, 
but can be inferred by loop analysis by advanced compiler) 

- Superscalar: exploit ILP within an instruction stream.  Process different instructions from 
the same instruction stream in parallel (within a core) 

- Parallelism automatically and dynamically discovered by the hardware during 
execution (not programmer visible) 
Not addressed further in this class. That’s for a proper computer architecture course.
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Part 2: accessing memory

Memory
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Terminology
▪ Memory latency 

- The amount of time for a memory request (e.g., load, store) from a 
processor to be serviced by the memory system 

- Example: 100 cycles, 100 nsec 

▪ Memory bandwidth 
- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s
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Stalls
▪ A processor “stalls”  when it cannot run the next instruction in 

an instruction stream because of a dependency on a previous 
instruction. 

▪ Accessing memory is a major source of stalls 
ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1 

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and 
mem[r3] have been loaded from memory 
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Review: why do modern processors have caches?

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches 

Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (cycles at 4GHz)

(Kaby Lake CPU)
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Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches 

- Dynamically analyze program’s access patterns, predict what it will access soon 

▪ Reduces stalls since data is resident in cache when accessed 

predict value of r2, initiate load 

predict value of r3, initiate load 

... 

...  

... 

... 

... 

... 

ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(consumes bandwidth, pollutes caches) 

(more detail later in course)

These loads are cache hits
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Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same 

core to hide stalls 

▪ Like prefetching, multi-threading is a latency hiding 
technique, not a latency reducing technique like caches
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Doing your laundry

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry
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Hiding stalls with multi-threading

Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading

Time
 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading

Time
    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading

Time
    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable

Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing trade-off

Time
    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any 
one thread, in order to increase overall system 
throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed 
by the processor. (The core is running some other thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Storing execution contexts

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage 
(or L1 cache)

Consider on-chip storage of execution contexts a finite resource.
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Many small contexts (high latency hiding ability)
1 core 

(16 hardware threads, storage for small working set per thread)
Fetch/ 

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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Four large contexts (low latency hiding ability)

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

1 core 
(4 hardware threads, storage for larger working set per thread)
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Hardware-supported multi-threading
▪ Core manages execution contexts for multiple threads 

- Runs instructions from runnable threads (processor makes decision about which 
thread to run each clock, not the operating system) 

- Core still has the same number of ALU resources: multi-threading only helps use 
them more efficiently in the face of high-latency operations like memory access 

▪ Interleaved multi-threading (a.k.a. temporal multi-threading) 
- What I described on the previous slides: each clock, the core chooses a thread, 

and runs an instruction from the thread on the ALUs 

▪ Simultaneous multi-threading (SMT) 
- Each clock, core chooses instructions from multiple threads to run on ALUs 
- Extension of superscalar CPU design 
- Example: Intel Hyper-threading (2 threads per core)
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Multi-threading summary
▪ Benefit: use a core’s execution resources (ALUs) more efficiently 

- Hide memory latency 

- Fill multiple functional units of superscalar architecture 
(when one thread has insufficient ILP) 

▪ Costs 
- Requires additional storage for thread contexts 

- Increases run time of any single thread 
(often not a problem, we usually care about throughput in parallel apps) 

- Requires additional independent work in a program (more independent work 
than ALUs!) 

- Relies heavily on memory bandwidth 
- More threads → larger working set → less cache space per thread 
- May go to memory more often, but can hide the latency 
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Kayvon’s fictitious multi-core chip
16 cores 

8 SIMD ALUs per core 

(128 total) 

4 threads per core 

16 simultaneous 
instruction streams 

64 total concurrent 
instruction streams 

512 independent pieces of 
work are needed to run chip 
with maximal latency 
hiding ability

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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= SIMD function unit, 
 control shared across 32 units 
(1 MUL-ADD per clock)

“Shared” memory 
(96 KB)

Execution contexts (registers) 
(256 KB)

▪ Instructions operate on 32 pieces of 
data at a time (instruction streams 
called “warps”).   

▪ Think: warp = thread issuing 32-wide 
vector instructions 

▪ Different instructions from up to four 
warps can be executed simultaneously 
(simultaneous multi-threading) 

▪ Up to 64 warps are interleaved on the 
SM (interleaved multi-threading) 

▪ Over 2,048 elements can be processed 
concurrently by a core

NVIDIA GTX 1080 core (“SM”)

GPUs: extreme throughput-oriented processors

Source: NVIDIA Pascal Tuning Guide

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode
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NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080: 
That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!
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CPU vs. GPU memory hierarchies
76 GB/sec

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Many GB)

Core 1

Core 8

L1 cache 
(32 KB)

L2 cache 
(256 KB)

CPU: 
Big caches, few threads per core, modest memory BW 
Rely mainly on caches and prefetching

GPU: 
Small caches, many threads, huge memory BW 
Rely heavily on multi-threading for performance

Execution 
contexts 
(256 KB)

L1 cache

Scratchpad 
(64 KB)

. . .

Execution 
contexts 
(256 KB)

L1 cache

Scratchpad 
(64 KB)

. . .

Core 1

Core 20

L2 cache 
(2 MB)

320 GB/sec Memory 
DDR5 DRAM 

(a few GB)
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Thought experiment
Task: element-wise multiplication of two vectors A and B 

Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU efficiency… but 4.2x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% 
efficiency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz) 
Need ~45 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)
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Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.
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Bandwidth is a critical resource

Performant parallel programs will: 

▪ Organize computation to fetch data from memory less often 
- Reuse data previously loaded by the same thread 

(traditional intra-thread temporal locality optimizations) 
- Share data across threads (inter-thread cooperation) 

▪ Request data less often (instead, do more arithmetic: it’s “free”) 
- Useful term: “arithmetic intensity” — ratio of math operations to data 

access operations in an instruction stream 
- Main point: programs must have high arithmetic intensity to utilize 

modern processors efficiently
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Summary
▪ Three major ideas that all modern processors employ to varying degrees 

- Provide multiple processing cores 
- Simpler cores (embrace thread-level parallelism over instruction-level parallelism) 

- Amortize instruction stream processing over many ALUs (SIMD) 
- Increase compute capability with little extra cost 

- Use multi-threading to make more efficient use of processing 
resources (hide latencies, fill all available resources) 

▪ Due to high arithmetic capability on modern chips, many parallel 
applications (on both CPUs and GPUs) are bandwidth bound 

▪ GPU architectures use the same throughput computing ideas as CPUs: 
but GPUs push these concepts to extreme scales
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For the rest of this class, know these terms
▪ Instruction stream 

▪ Multi-core processor 

▪ SIMD execution 

▪ Coherent control flow 

▪ Hardware multi-threading 
- Interleaved multi-threading 
- Simultaneous multi-threading 

▪ Memory latency 

▪ Memory bandwidth 

▪ Bandwidth bound application 

▪ Arithmetic intensity
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Review slides 
(additional examples for review and to check our understanding)
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Putting together the concepts from this lecture: 
(if you understand the following sequence you understand this lecture)
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Running code on a simple processor

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

My very simple program: 
compute sin(x) using Taylor expansion

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

My very simple processor: 
completes one instruction per clock
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Review: superscalar execution

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Unmodified program

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)



Stanford CS149, Fall 2020

Review: multi-core execution (two cores)
Modify program to create two threads of 

control (two instruction streams) 

My dual-core processor: 
executes one instruction per clock 

from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

typedef struct { 

   int N; 

   int terms; 

   float* x; 

   float* result; 

} my_args; 

void parallel_sinx(int N, int terms, float* x, float* result) 

{ 

    pthread_t thread_id; 

    my_args args; 

    args.N = N/2; 

    args.terms = terms; 

    args.x = x; 

    args.result = result; 

    pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread   

    sinx(N - args.N, terms, x + args.N, result + args.N); // do work 

    pthread_join(thread_id, NULL); 

} 

void my_thread_start(void* thread_arg) 

{ 

   my_args* thread_args = (my_args*)thread_arg; 

   sinx(args->N, args->terms, args->x, args->result); // do work 

}
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Review: multi-core + superscalar execution
Modify program to create two threads of 

control (two instruction streams) 
My superscalar dual-core processor: 

executes up to two instructions per clock 
from an instruction stream on each core.

Execution 
Context

typedef struct { 

   int N; 

   int terms; 

   float* x; 

   float* result; 

} my_args; 

void parallel_sinx(int N, int terms, float* x, float* result) 

{ 

    pthread_t thread_id; 

    my_args args; 

    args.N = N/2; 

    args.terms = terms; 

    args.x = x; 

    args.result = result; 

    pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread   

    sinx(N - args.N, terms, x + args.N, result + args.N); // do work 

    pthread_join(thread_id, NULL); 

} 

void my_thread_start(void* thread_arg) 

{ 

   my_args* thread_args = (my_args*)thread_arg; 

   sinx(args->N, args->terms, args->x, args->result); // do work 

}

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Execution 
Context

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2
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Review: multi-core (four cores)
Modify program to create many threads of control: 

recall Kayvon’s fictitious language 
My quad-core processor: 

executes one instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1)  

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}
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Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body. 
Optimization: share instruction stream across execution of multiple 
iterations (single instruction multiple data = SIMD) My SIMD quad-core processor: 

executes one 8-wide SIMD instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1)  

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context
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Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency 
Solution: hide latency of loading data for one iteration by 
executing arithmetic instructions from other iterations

void sinx(int N, int terms, float* x, float* result) 

{ 

   // declare independent loop iterations 

   forall (int i from 0 to N-1)  

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Fetch/ 
DecodeMemory load

Memory store

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

My multi-threaded, SIMD quad-core processor: 
executes one SIMD instruction per clock 

from one instruction stream on each core.  But 
can switch to processing the other instruction 

stream when faced with a stall.
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Summary: four superscalar, SIMD, multi-threaded cores

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor: 
executes up to two instructions per clock  from one instruction stream on each core 

(in this example: one SIMD instruction + one scalar instruction).  
Processor can switch to execute the other instruction stream when faced with stall.
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Connecting it all together
Kayvon’s simple quad-core processor:

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory 

Controller

Memory Bus 
(to DRAM)

On-chip 
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two 
instructions per clock per core (one of those instructions is 8-wide SIMD)
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Thought experiment
▪ You write a C application that spawns two pthreads 

▪ The application runs on the processor shown below 
- Two cores, two-execution contexts per core, up to instructions per clock, one 

instruction is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s pthreads 
to the processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were implementing the OS, how would to assign the two 
threads to the four execution contexts? 

▪ Another question: How would you 
assign threads to execution contexts 
if your C program spawned five 
pthreads?
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Visualizing interleaved and 
simultaneous multi-threading 

(and combinations thereof)
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Interleaved multi-threading

Thread 0

Thread 1

Consider a processor with: 
▪ Two execution contexts 
▪ One fetch and decode unit (one instruction per clock) 
▪ One ALU (to execute the instruction)

time (clocks)

In an interleaved multi-threading scenario, the threads share the processor.

= ALU executing T0 at this time

= ALU executing T1 at this time

(This is a visualization of when threads are having their instructions executed by the ALU.)
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Interleaved multi-threading

Thread 0

Thread 1

Consider a processor with: 
▪ Two execution contexts 
▪ One fetch and decode unit (one instruction per clock) 
▪ One ALU (to execute the instruction)

time (clocks)

Same as previous slide, but now just a different scheduling order of the threads 
(fine-grained interleaving)

= ALU executing T0 at this time

= ALU executing T1 at this time
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Simultaneous multi-threading

Thread 0

Thread 1

Consider a processor with: 
▪ Two execution contexts 
▪ Two fetch and decode units (two instructions per clock) 
▪ Two ALUs (to execute the two instructions)

time (clocks)

In an simultaneous multi-threading scenario, the threads execute simultaneously on 
the two ALUs. (note, no ILP in a thread is necessary since each thread is run sequentially 
on one ALU)

= ALU executing T0 at this time

= ALU executing T1 at this time
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Combining simultaneous and interleaved multi-threading

Thread 0

Thread 1

Consider a processor with: 
▪ Four execution contexts 
▪ Two fetch and decode units (two instructions per clock, choose two of four threads) 
▪ Two ALUs (to execute the two instructions)

time (clocks)

Thread 2

Thread 3

= some ALU executing T0 at this time

= some ALU executing T1 at this time

= some ALU executing T2 at this time

= some ALU executing T3 at this time
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Another way to visualize execution (ALU-centric view)

ALU 0

ALU 1

Consider a processor with: 
▪ Four execution contexts 
▪ Two fetch and decode units (two instructions per clock, choose two of four threads) 
▪ Two ALUs (to execute the two instructions)

time (clocks)

= executing T0 at this time

= executing T1 at this time

= executing T2 at this time

= executing T3 at this time

Now the graph is visualizing what each ALU is doing each clock:
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Instructions can be drawn from same thread (ILP)

ALU 0

ALU 1

Consider a processor with: 
▪ Four execution contexts 
▪ Two fetch and decode units (two instructions per clock, choose any two 

independent instructions from the four threads) 
▪ Two ALUs (to execute the two instructions)

time (clocks)

= executing T0 at this time

= executing T1 at this time

= executing T2 at this time

= executing T3 at this time

Two instructions from same thread executing simultaneously.


