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Today
▪ We will discuss the workload of evaluating deep neural 

networks (performing “inference”) 
- This lecture will be heavily biased towards concerns of DNNs that 

process images (to be honest, because that is what your instructor 
knows best) 

- Which admittedly is not the majority of DNN evaluation in the 
world right now (text processing, speech, ads, etc.)
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What is a deep neural network?

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3
w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

A basic unit: 
Unit with n inputs described by n+1 parameters 
(weights + bias)

f

 
X

i

xiwi + b

!

b

Input: Unit (“neuron”)

output

f(x) = max(0, x)

Example: rectified linear unit (ReLU)

Biological inspiration:

Machine learning interpretation:

Basic computational interpretation: 
It is just a circuit! 

unit output corresponds loosely to 
activation of neuron

binary classifier: interpret output as the 
probability of one class

f(x) =
1

1 + e�x
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Deep neural network: topology

Fully 
connected layer

Sparsely (locally) 
connected layer 

(each unit only received inputs 
from three input nodes)

Inputs

Inputs

OutputsOutput

Fully connected layer
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Recall image convolution (3x3 conv)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9}; 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Convolutional layer: locally connected AND all units in layer 
share the same parameters (same weights + same bias): 
(note: network illustration above only shows links for a 1D conv: 
 a.k.a. one iteration of ii loop)

Inputs

. . .. .
 . . .
 .

Inputs

Conv 
Layer
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Strided 3x3 convolution
int WIDTH = 1024; 
int HEIGHT = 1024; 
int STRIDE = 2; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[(WIDTH/STRIDE) * (HEIGHT/STRIDE)]; 

float weights[] = {1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9}; 

for (int j=0; j<HEIGHT; j+=STRIDE) { 
  for (int i=0; i<WIDTH; i+=STRIDE) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      for (int ii=0; ii<3; ii++) { 
         tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[(j/STRIDE)*WIDTH + (i/STRIDE)] = tmp; 
  } 
}

Inputs

Convolutional layer with stride 2 
(0,1,2) , (2,3,4) , (4,5,6) , …

c

Inputs

0 

1 

2 

3 

4 

5 

6
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What does convolution using these filter 
weights do?

2

4
.111 .111 .111
.111 .111 .111
.111 .111 .111

3

5

Original

Blurred

“Box blur”
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What does convolution using these filter 
weights do?

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

Original

Blurred

“Gaussian Blur”
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What does convolution with these filters do?

Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical 
gradients
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Gradient detection filters
Horizontal gradients

Vertical gradients

Note: you can think of a filter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the filter 
to the region surrounding each pixel 
in the input image
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Applying many filters to an image at once

Input: image (single channel): 
W x H

3x3 spatial convolutions on image 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by unique 
set of 3x3 weights 

(each filter “responds” to 
different image phenomena)

Filter response maps 
(num_filters of them)
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Applying many filters to an image at once
Input RGB image (W x H x 3)

96 11x11x3 filters 
(operate on RGB) 96 responses (normalized)



Stanford CS149, Fall 2019

Adding additional layers

Input: image 
(single channel) 

W x H

3x3 spatial convolutions 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by 
unique set of weights 
(responds to different 

image phenomena)

Filter responses 

post ReLU 
W x H x num_filters

…ReLU Pool
…

post pool 
W/2 x H/2 x num_filters

(max response 
in 2x2 region) 

Note data reduction as a 
result of pooling

Conv

…
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Example: “AlexNet” object detection network
Sequences of conv + reLU + pool (optional) layers
Example: AlexNet [Krizhevsky12]: 5 convolutional layers + 3 fully connected layers 

Another example: VGG-16 [Simonyan15]: 13 convolutional layers
input: 224 x 224 RGB 
conv/reLU: 3x3x3x64 
conv/reLU: 3x3x64x64 
maxpool 
conv/reLU: 3x3x64x128 
conv/reLU: 3x3x128x128 
maxpool

conv/reLU: 3x3x128x256 
conv/reLU: 3x3x256x256 
conv/reLU: 3x3x256x256 
maxpool 
conv/reLU: 3x3x256x512 
conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
maxpool

conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

convolutional layers fully-connected
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Why deep? Right: images that generate strongest response for filters at each layer
Left: what pixels in image patch trigger the response

[image credit: Zeiler 14] 
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Why deep?

[image credit: Zeiler 14] 
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More recent image understanding networks
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ResNet (34 layer version)

Inception (GoogleLeNet)

Fully Convolutional Network for image segmentation

Upsampling network
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Deep networks learn useful representations

▪ Multi-scale learning of useful features for the task at hand 
- Example on previous slides: subparts detectors emerged in network for 

object classification 

▪ But wait… how did you learn the values of all the weights? 
- For today, assume the weights are given (today is about evaluating deep 

networks, not training them)
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Efficiently implementing convolution layers
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Dense matrix multiplication
float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int j=0; j<M; j++) 
  for (int i=0; i<N; i++) 
     for (int k=0; k<K; k++) 
         C[j][i] += A[j][k] * B[k][i];

K

M

N

M K

N

= X

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

C A B
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Blocked dense matrix multiplication

float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int jblock=0; jblock<M; jblock+=BLOCKSIZE_J) 
  for (int iblock=0; iblock<N; iblock+=BLOCKSIZE_I) 
     for (int kblock=0; kblock<K; kblock+=BLOCKSIZE_K) 
        for (int j=0; j<BLOCKSIZE_J; j++) 
           for (int i=0; i<BLOCKSIZE_I; i++) 
              for (int k=0; k<BLOCKSIZE_K; k++) 
                 C[jblock+j][iblock+i] += A[jblock+j][kblock+k] * B[kblock+k][iblock+i];

K

M

N

M K

N

= XC A B

Idea: compute partial result for block of C while required blocks of A and B remain in cache 
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why? 
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Hierarchical blocked matrix mult
float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int jblock2=0; jblock2<M; jblock2+=L2_BLOCKSIZE_J) 
  for (int iblock2=0; iblock2<N; iblock2+=L2_BLOCKSIZE_I) 
     for (int kblock2=0; kblock2<K; kblock2+=L2_BLOCKSIZE_K) 
        for (int jblock1=0; jblock1<L1_BLOCKSIZE_J; jblock1+=L1_BLOCKSIZE_J) 
           for (int iblock1=0; iblock1<L1_BLOCKSIZE_I; iblock1+=L1_BLOCKSIZE_I) 
              for (int kblock1=0; kblock1<L1_BLOCKSIZE_K; kblock1+=L1_BLOCKSIZE_K) 
                  for (int j=0; j<BLOCKSIZE_J; j++) 
                     for (int i=0; i<BLOCKSIZE_I; i++) 
                        for (int k=0; k<BLOCKSIZE_K; k++) 
                           ...

Not shown: final level of “blocking” for register locality…

Exploit multiple levels of memory hierarchy
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Blocked dense matrix multiplication (1)

... 
for (int j=0; j<BLOCKSIZE_J; j++) { 
   for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) { 
      simd_vec C_accum = vec_load(&C[jblock+j][iblock+i]); 
      for (int k=0; k<BLOCKSIZE_K; k++) { 
         // C = A*B + C 
         simd_vec A_val = splat(&A[jblock+j][kblock+k]); // load a single element in vector register 
         simd_muladd(A_val, vec_load(&B[kblock+k][iblock+i]), C_accum); 
      } 
      vec_store(&C[jblock+j][iblock+i], C_accum); 
   } 
}

BLOCKSIZE_K

BLOCKSIZE_J

BLOCKSIZE_I

= XC A B

Vectorize i loop 
Good: also improves spatial locality in access to B 
Bad: working set increased by SIMD_WIDTH, still walking over B in large steps

BLOCKSIZE_I

BL
OC

KS
IZ

E_
K

BL
OC

KS
IZ

E_
J

Consider SIMD parallelism 
within a block
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Blocked dense matrix multiplication (2)

... 
for (int j=0; j<BLOCKSIZE_J; j++) 
   for (int i=0; i<BLOCKSIZE_I; i++) { 
      float C_scalar = C[jblock+j][iblock+i]; 
      // C_scalar += dot(row of A,row of B) 
      for (int k=0; k<BLOCKSIZE_K; k+=SIMD_WIDTH) { 
        C_scalar += simd_dot(vec_load(&A[jblock+j][kblock+k]), vec_load(&Btrans[iblock+i][[kblock+k]); 
      } 
      C[jblock+j][iblock+i] = C_scalar; 
   }

BLOCKSIZE_K

BLOCKSIZE_J
BLOCKSIZE_I

= XC A
BT

Assume i dimension is small.  Previous vectorization scheme (1) would not work well. 
Pre-transpose block of B (copy block of B to temp buffer in transposed form) 
Vectorize innermost loop

BLOCKSIZE_I

BLOCKSIZE_K

BL
OC

KS
IZ

E_
J
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Blocked dense matrix multiplication (3)

// assume blocks of A and C are pre-transposed as Atrans and Ctrans 
for (int j=0; j<BLOCKSIZE_J; j+=SIMD_WIDTH) { 
   for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) { 

      simd_vec C_accum[SIMD_WIDTH]; 
      for (int k=0; k<SIMD_WIDTH; k++)   // load C_accum for a SIMD_WIDTH x SIMD_WIDTH chunk of C^T 
         C_accum[k] = vec_load(&Ctrans[iblock+i+k][jblock+j]); 

      for (int k=0; k<BLOCKSIZE_K; k++) { 
        simd_vec bvec = vec_load(&B[kblock+k][iblock+i]); 
        for (int kk=0; kk<SIMD_WIDTH; kk++)  // innermost loop items not dependent 
            simd_muladd(vec_load(&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]); 
      } 

      for (int k=0; k<SIMD_WIDTH; k++) 
        vec_store(&Ctrans[iblock+i+k][jblock+j], C_accum[k]); 
   } 
}

BLOCKSIZE_J

BLOCKSIZE_I

BLOCKSIZE_I

= XCT AT B

BLOCKSIZE_J

BL
OC

KS
IZ

E_
K

BL
OC

KS
IZ

E_
K
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Convolution as matrix-vector product

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

3x3 = 9

0   0   0   0   x00 x01 0   x10 x11

WxH

...

Construct matrix from elements of input image

Note: 0-pad matrix

O(N) storage overhead for filter with N elements 
Must construct input data matrix
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3x3 convolution as matrix-vector product

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

Construct matrix from elements of input image

Note: 0-pad matrix

...

O(N) storage overhead for filter with N elements 
Must construct input data matrix
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Multiple convolutions as matrix-matrix mult
X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

WxH
...

x00 x01 x02 x10 x11 x12 x20 x21 x22

2

6664

w00 w01 w02 · · · w0N

w10 w11 w12 · · · w0N
...

...
...

...
w80 w81 w82 · · · w8N

3

7775

num filters

...
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Multiple convolutions on multiple input channels

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9 x num input channels

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

num filters

...

channel 1

channel 0

channel 2

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

...

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

channel 0 values channel 1 values channel 2 values

For each filter, sum responses over input channels 

Equivalent to (3 x 3 x num_channels) convolution 
on (W x H x num_channels) input data

2

6666666666666666666664

w000 w001 w002 · · · w00N

w010 w011 w012 · · · w01N
...

...
...

...
w080 w081 w082 · · · w08N

w100 w101 w102 · · · w10N

w110 w111 w112 · · · w11N
...

...
...

...
w180 w181 w182 · · · w18N

w200 w201 w202 · · · w20N

w210 w211 w212 · · · w21N
...

...
...

...
w280 w281 w282 · · · w28N

3

7777777777777777777775



Stanford CS149, Fall 2019

Direct implementation of conv layer
float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH]; 

float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS]; 

float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH]; 

// assumes convolution stride is 1 

for (int img=0; img<IMAGE_BATCH_SIZE; img++) 

   for (int j=0; j<INPUT_HEIGHT; j++) 

      for (int i=0; i<INPUT_WIDTH; i++) 

         for (int f=0; f<LAYER_NUM_FILTERS; f++) { 

            output[img][j][i][f] = 0.f; 

            for (int kk=0; kk<INPUT_DEPTH; kk++)       // sum over filter responses of input channels 

               for (int jj=0; jj<LAYER_FILTER_Y; jj++)    // spatial convolution (Y) 

             for (int ii=0; ii<LAYER_FILTER_X; ii+)  // spatial convolution (X) 

                 output[img][j][i][f] += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk]; 

     }

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and reuse of input values 
(across different filters)

Avoids O(N) footprint increase by avoiding materializing input matrix 
In theory loads O(N) times less data (potentially higher arithmetic intensity… but matrix mult is typically compute-bound) 
But must roll your own highly optimized implementation of complicated loop nest.
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Convolutional layer in Halide
int in_w, in_h, in_ch = 4;           // input params: assume initialized  

Func in_func;                        // assume input function is initialized 

int num_f, f_w, f_h, pad, stride;    // parameters of the conv layer 

Func forward = Func("conv"); 
Var x, y, z, n;                      // n is minibatch dimension 

// This creates a padded input to avoid checking boundary 
// conditions while computing the actual convolution 
f_in_bound = BoundaryConditions::repeat_edge(in_func, 0, in_w, 0, in_h); 

// Create buffers for layer parameters 
Halide::Buffer<float> W(f_w, f_h, in_ch, num_f) 
Halide::Buffer<float> b(num_f); 

// domain of summation for filter with W x H x in_ch 
RDom r(0, f_w, 0, f_h, 0, in_ch); 

// Initialize to bias 
forward(x, y, z, n) =  b(z); 
forward(x, y, z, n) += W(r.x, r.y, r.z, z) * 
                       f_in_bound(x*stride + r.x - pad, y*stride + r.y - pad, r.z, n); 

Consider scheduling this seven-dimensional loop nest! 
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Different layers of a single DNN may benefit from 
unique scheduling strategies
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VGG-16 conv layers

L1 L2 L3 L4 L5 L6 L7 L8

Re
la

tiv
e

Th
ro

ug
hp

ut

1000 2000 4000500 8000

Re
la

tiv
e

Th
ro

ug
hp

ut

Image size (N x N)

8 16 3242

Throughput: Input-Specialized Schedules
(relative to best-on-average schedule) 
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Figure 7: Specializing schedules to specific problem sizes of indi-
vidual VGG-16 network layers yields up to 1.8⇥ benefit (compared
to the schedule that performs best on average across all layers).
Gains from image-size specialization (on HARRIS) and bin count
specialization (LOCAL_LAP) are modest.

find that a reduced auto-tuning search that varies only CACHE_SIZE
(32,128,256 KB) and LOAD_COST (10,20) completes in under ten min-
utes for our benchmarks, but yields results comparable to the full
brute search taking hours to days (dark blue bar in Figure 6). When
auto-tuning to achieve greater performance is acceptable, this sim-
ple six-configuration auto-tuning scheme may serve as a practical
and effective alternative to prior work utilizing advanced stochastic
search techniques to explore the full space of Halide schedules.

5.2 Specializing Schedules to Problem Size

Automatic scheduling presents the opportunity to aggressively spe-
cialize schedules to specific dataset sizes. For example, nine of the
13 convolutional layers in the VGG-16 network operate on datasets
of different size (the first convolutional layer’s input is 224⇥224⇥3,
while the last layer’s input is 14 ⇥ 14 ⇥ 512). To understand the
value of specializing schedules to different input configurations, we
compared the performance of schedules generated specifically for
each layer’s input size, with the performance of a single fixed sched-
ule. (The single fixed schedule was chosen to be the schedule that
performed best on average when run on all layers.) Figure 7-top
shows that several layers do benefit from schedule specialization.
The maximum performance benefit of a specialized schedule was
1.8⇥. We observe the auto-scheduler makes different global opti-
mization decisions (exploiting reuse of layer weights or input feature
maps) based on problem size.

We further explored the sensitivity of schedule performance to prob-
lem size by performing similar experiments that varied image size
in HARRIS (the single, fixed schedule was created for 2000⇥2000
images) and the number of bins in LOCAL_LAP (fixed scheduled
assumes 8 bins). In both cases, modest benefits (but no more than
40% on HARRIS, 20% on LOCAL_LAP) are observed by providing
the auto-scheduler accurate estimates of the problem size used at
runtime. In general we find that while it is possible to gain additional
performance by auto-scheduling for various input sizes, for many
image processing pipelines the performance of an auto-scheduled
pipeline generated for a reasonable estimate of average problem
dimensions is robust across a range of sizes.
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Figure 8: Two professional Halide developers were tasked with
developing schedules for new programs. In two of three cases,
even after nearly an hour of work, the manually-authored schedules
perform worse than auto-scheduled results (generated in seconds).

5.3 Comparison with Manual Scheduling Effort

The previous subsections demonstrated that the auto-scheduler pro-
duces schedules yielding performance on par with the best known
manually-optimized schedules. To better understand how long it
would take for an expert Halide developer to match the performance
of the auto-scheduler when starting from scratch, we recruited two
professional Halide developers to “race” the auto-scheduler. (These
developers are authors on the paper.)

The experts selected three benchmarks (LENSBLUR, NLMEANS, and
MAXFILTER) they had never scheduled before, and implemented the
original Halide algorithm for these programs. For each benchmark,
each expert programmer independently developed a schedule in a
single programming session. The programmer stopped optimizing
after converging on a solution they considered their best. While
developing the schedules the developers documented their progress
by measuring the performance of their current schedule at various
points of time in each session. We then compared the auto-scheduled
code’s performance to that of the manually authored schedules.

Results of the comparison, are shown in Figure 8. The X-axis in
each of the graphs indicates development time (in minutes) for the
manually developed schedules. The Y-axis shows the performance
of the benchmark (measured as pixel throughput, so higher is better).
The horizontal line corresponds to the performance of the schedule
generated by the auto-scheduler (produced in seconds). The yellow
and gray lines each correspond to the progress of a programmer. The
races were conducted using four cores of an Intel E5-2690 Xeon
CPU owned by the developers, not the 6-core Xeon CPU used in our
prior results.

On both the LENSBLUR and NLMEANS pipelines, the auto-scheduler
outperforms the experts (by nearly a factor of two on NLMEANS).
The experts outperform the auto-scheduler on MAXFILTER. (One
of the experts found a solution nearly three times faster on their
machine, but the performance difference between this schedule and
the auto-scheduler’s result is narrower on the 6-core machine used to

[Figure credit: Mullapudi et al. 2016]

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

Notice sizes of weights and activations in this network: 
(and consider SIMD widths of modern machines). Ug!
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Many efforts to automatically schedule key 
DNN operations



Stanford CS149, Fall 2019

Halide autoscheduler produces efficient DNN layer 
implementations (for CPUs)
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Reminder: energy cost of data access

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.

[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.

[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.

2

Estimates for 45nm process 
[Source: Mark Horowitz]

Significant fraction of energy expended moving data to processor ALUs
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Reducing network footprint
▪ Early DNN designs: large storage cost for model 

parameters 
- AlexNet model: ~200 MB 
- VGG-16 model: ~500 MB 
- ResNet-50: 102 MB 
- Inception-v3: 91 MB 

▪ In many modern DNNs, activations (intra-layer 
intermediate buffers) require more storage than 
weights 
- So bandwidth is often due to reading/writing 

intermediates 



Stanford CS149, Fall 2019

Is there an opportunity for compression?
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“Pruning” (sparsifying) a network 
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f(x) = max(0, x)

If weight is near zero, then 
corresponding input has little 
impact on output of neuron. 
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“Pruning” (sparsifying) a network 
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b output

f(x) = max(0, x)

Idea: prune connections with 
near zero weight

Remove entire units if all 
connections are pruned.
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Representing “sparsified” networks

Indices    1    4   9  ... 
Value     1.8  0.5  2.1 0 1.8 0 0 0.5 0 0 0 0 1.1 ...

Reduce storage over head of indices by delta encoding them to fit in 8 bits
Indices   1    3    5  ... 
Value     1.8  0.5  2.1 

Step 1: prune low-weight links (iteratively retrain network, then prune)  
- Store weight matrices in compressed sparse row (CSR) format 
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Efficiently storing the surviving connections
Step 2: Weight sharing: make surviving connections share a small set of weights 

- Cluster weights via k-means clustering 
- Compress weights by only storing index of assigned cluster (lg(k) bits) 
- This is a form of lossy compression  

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Step 3: Huffman encode quantized weights and CSR indices (lossless compression)  

[Figure credit: Han ICLR16]
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VGG-16 sparsification

Published as a conference paper at ICLR 2016

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 307K 38% 8 5.5 4 2.3 14.5% 9.43%
conv3 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 663K 37% 8 5.2 4 2.5 14.1% 9.11%
conv5 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 3.2 7.3% 5.85%
Total 61M 11%(9⇥) 5.4 4 4 3.2 3.7% (27⇥) 2.88% (35⇥)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weigh
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 1 2K 58% 8 6.8 5 1.7 40.0% 29.97%
conv1 2 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2 1 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2 2 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3 1 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3 2 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3 3 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4 1 1M 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4 3 2M 34% 8 4.4 5 2.5 14.0% 7.47%
conv5 1 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5 2 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5 3 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 3.4 7.1% 5.24%
Total 138M 7.5%(13⇥) 6.4 4.1 5 3.1 3.2% (31⇥) 2.05% (49⇥)

is critical for real time image processing, where there is little reuse of these layers across images
(unlike batch processing). This is also critical for fast object detection algorithms where one CONV
pass is used by many FC passes. The reduced layers will fit in an on-chip SRAM and have modest
bandwidth requirements. Without the reduction, the bandwidth requirements are prohibitive.

6 DISCUSSIONS

6.1 PRUNING AND QUANTIZATION WORKING TOGETHER

Figure 6 shows the accuracy at different compression rates for pruning and quantization together
or individually. When working individually, as shown in the purple and yellow lines, accuracy of
pruned network begins to drop significantly when compressed below 8% of its original size; accuracy
of quantized network also begins to drop significantly when compressed below 8% of its original
size. But when combined, as shown in the red line, the network can be compressed to 3% of original
size with no loss of accuracy. On the far right side compared the result of SVD, which is inexpensive
but has a poor compression rate.

The three plots in Figure 7 show how accuracy drops with fewer bits per connection for CONV layers
(left), FC layers (middle) and all layers (right). Each plot reports both top-1 and top-5 accuracy.
Dashed lines only applied quantization but without pruning; solid lines did both quantization and
pruning. There is very little difference between the two. This shows that pruning works well with
quantization.

Quantization works well on pruned network because unpruned AlexNet has 60 million weights to
quantize, while pruned AlexNet has only 6.7 million weights to quantize. Given the same amount of
centroids, the latter has less error.

7

P = connection pruning (prune low weight connections) 
Q = quantize surviving weights (using shared weights) 
H = Huffman encode

Large savings in fully connected layers due to combination of pruning, quantization, Huffman encoding *

Published as a conference paper at ICLR 2016

Table 1: The compression pipeline can save 35⇥ to 49⇥ parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Parameters Compress
Rate

LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40⇥
LeNet-5 Ref 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39⇥
AlexNet Ref 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35⇥
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49⇥

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%
Total 266K 8%(12⇥) 6 5.1 5 3.7 3.1% (32⇥) 2.49% (40⇥)

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%
Total 431K 8%(12⇥) 5.3 4.1 5 4.4 3.05% (33⇥) 2.55% (39⇥)

neurons each, which achieves 1.6% error rate on Mnist. LeNet-5 is a convolutional network that
has two convolutional layers and two fully connected layers, which achieves 0.8% error rate on
Mnist. Table 2 and table 3 show the statistics of the compression pipeline. The compression rate
includes the overhead of the codebook and sparse indexes. Most of the saving comes from pruning
and quantization (compressed 32⇥), while Huffman coding gives a marginal gain (compressed 40⇥)

5.2 ALEXNET ON IMAGENET

We further examine the performance of Deep Compression on the ImageNet ILSVRC-2012 dataset,
which has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as
the reference model, which has 61 million parameters and achieved a top-1 accuracy of 57.2% and a
top-5 accuracy of 80.3%. Table 4 shows that AlexNet can be compressed to 2.88% of its original size
without impacting accuracy. There are 256 shared weights in each CONV layer, which are encoded
with 8 bits, and 32 shared weights in each FC layer, which are encoded with only 5 bits. The relative
sparse index is encoded with 4 bits. Huffman coding compressed additional 22%, resulting in 35⇥
compression in total.

5.3 VGG-16 ON IMAGENET

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 (Si-
monyan & Zisserman, 2014), on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
compressed both convolutional and fully-connected layers to realize a significant reduction in the
number of effective weights, shown in Table5.

The VGG16 network as a whole has been compressed by 49⇥. Weights in the CONV layers are
represented with 8 bits, and FC layers use 5 bits, which does not impact the accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction

6

ImageNet Image Classification Performance
Top-1 Error Top-5 Error Model size

[Han ICLR16]

* Benefits of automatic pruning apply mainly to fully connected layers, but unfortunately many modern networks 
are dominated by costs of convolutional layers
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Compressing weights (and activations)
▪ Many efforts to use low precision values for DNN weights and 

intermediate activations 

▪ In the extreme case: 1-bit
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This a great example of non-domain-specific vs. 
domain-specific approach to innovation
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Leveraging domain-knowledge: more efficient 
topologies (aka better algorithm design)
▪ Original DNNs for image recognition where over-provisioned 

- Large filters, many filters 

▪ Modern DNNs designs are hand-designed to be sparser 
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ResNet (34 layer version)

Inception v1 (GoogleLeNet) — 27 total layers, 7M parameters

SqueezeNet: [Iandola 2017] Reduced number of parameters in AlexNet by 50x, 
with similar performance on image classification
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Modular network designs

Stem

Input (299x299x3) 299x299x3

4 x Inception-A

Output: 35x35x384

Output: 35x35x384

Reduction-A Output: 17x17x1024

7 x Inception-B

3 x Inception-C

Reduction-B

Avarage Pooling

Dropout (keep 0.8)

Output: 17x17x1024

Output: 8x8x1536

Output: 8x8x1536

Output: 1536

Softmax

Output: 1536

Output: 1000

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.

Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.

1x1 Conv 
(96)

1x1 Conv
(64)

1x1 Conv
(64)

3x3 Conv
(96)

3x3 Conv
(96)

3x3 Conv
(96)

Filter concat

Filter concat

Avg Pooling

1x1 Conv
(96)

Figure 4. The schema for 35 ⇥ 35 grid modules of the pure
Inception-v4 network. This is the Inception-A block of Figure 9.

Figure 5. The schema for 17 ⇥ 17 grid modules of the pure
Inception-v4 network. This is the Inception-B block of Figure 9.

Figure 6. The schema for 8⇥8 grid modules of the pure Inception-
v4 network. This is the Inception-C block of Figure 9.

Figure 7. The schema for 35 ⇥ 35 to 17 ⇥ 17 reduction module.
Different variants of this blocks (with various number of filters)
are used in Figure 9, and 15 in each of the new Inception(-v4, -
ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l,
m, n numbers represent filter bank sizes which can be looked up
in Table 1.

Figure 8. The schema for 17 ⇥ 17 to 8 ⇥ 8 grid-reduction mod-
ule. This is the reduction module used by the pure Inception-v4
network in Figure 9.

Figure 4. The schema for 35 ⇥ 35 grid modules of the pure
Inception-v4 network. This is the Inception-A block of Figure 9.

1x1 Conv 
(384)

1x1 Conv
(192)

1x1 Conv
(192)

1x7 Conv
(224)

1x7 Conv
(192)

7x1 Conv
(224)

Filter concat

Filter concat

Avg Pooling

1x1 Conv
(128)

1x7 Conv
(256)

1x7 Conv
(224)

7x1 Conv
(256)

Figure 5. The schema for 17 ⇥ 17 grid modules of the pure
Inception-v4 network. This is the Inception-B block of Figure 9.

Figure 6. The schema for 8⇥8 grid modules of the pure Inception-
v4 network. This is the Inception-C block of Figure 9.

Figure 7. The schema for 35 ⇥ 35 to 17 ⇥ 17 reduction module.
Different variants of this blocks (with various number of filters)
are used in Figure 9, and 15 in each of the new Inception(-v4, -
ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l,
m, n numbers represent filter bank sizes which can be looked up
in Table 1.

Figure 8. The schema for 17 ⇥ 17 to 8 ⇥ 8 grid-reduction mod-
ule. This is the reduction module used by the pure Inception-v4
network in Figure 9.

Inception v4

A block

B block
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Inception stem

tation to reduce the number of such tensors. Historically, we
have been relatively conservative about changing the archi-
tectural choices and restricted our experiments to varying
isolated network components while keeping the rest of the
network stable. Not simplifying earlier choices resulted in
networks that looked more complicated that they needed to
be. In our newer experiments, for Inception-v4 we decided
to shed this unnecessary baggage and made uniform choices
for the Inception blocks for each grid size. Plase refer to
Figure 9 for the large scale structure of the Inception-v4 net-
work and Figures 3, 4, 5, 6, 7 and 8 for the detailed struc-
ture of its components. All the convolutions not marked
with “V” in the figures are same-padded meaning that their
output grid matches the size of their input. Convolutions
marked with “V” are valid padded, meaning that input patch
of each unit is fully contained in the previous layer and the
grid size of the output activation map is reduced accord-
ingly.

3.2. Residual Inception Blocks
For the residual versions of the Inception networks, we

use cheaper Inception blocks than the original Inception.
Each Inception block is followed by filter-expansion layer
(1 ⇥ 1 convolution without activation) which is used for
scaling up the dimensionality of the filter bank before the
addition to match the depth of the input. This is needed to
compensate for the dimensionality reduction induced by the
Inception block.

We tried several versions of the residual version of In-
ception. Only two of them are detailed here. The first
one “Inception-ResNet-v1” roughly the computational cost
of Inception-v3, while “Inception-ResNet-v2” matches the
raw cost of the newly introduced Inception-v4 network. See
Figure 15 for the large scale structure of both varianets.
(However, the step time of Inception-v4 proved to be signif-
icantly slower in practice, probably due to the larger number
of layers.)

Another small technical difference between our resid-
ual and non-residual Inception variants is that in the case
of Inception-ResNet, we used batch-normalization only on
top of the traditional layers, but not on top of the summa-
tions. It is reasonable to expect that a thorough use of batch-
normalization should be advantageous, but we wanted to
keep each model replica trainable on a single GPU. It turned
out that the memory footprint of layers with large activa-
tion size was consuming disproportionate amount of GPU-
memory. By omitting the batch-normalization on top of
those layers, we were able to increase the overall number
of Inception blocks substantially. We hope that with bet-
ter utilization of computing resources, making this trade-off
will become unecessary.

3x3 Conv
(32 stride 2 V)

Input 
(299x299x3)

3x3 Conv
(32 V)

3x3 Conv
(64)

3x3 MaxPool
(stride 2 V)

3x3 Conv
(96 stride 2 V)

Filter concat

1x1 Conv
(64)

3x3 Conv
(96 V)

1x1 Conv
(64)

7x1 Conv
(64)

1x7 Conv
(64)

Filter concat

3x3 Conv
(96 V)

MaxPool
(stride=2 V)

3x3 Conv
(192 V)

Filter concat

299x299x3

149x149x32

147x147x32

147x147x64

73x73x160

71x71x192

35x35x384

Figure 3. The schema for stem of the pure Inception-v4 and
Inception-ResNet-v2 networks. This is the input part of those net-
works. Cf. Figures 9 and 15
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ResNet 
7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output 

size: 112

output 

size: 224

output 

size: 56

output 

size: 28

output 

size: 14

output 

size: 7

output 

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.

1x1 Conv 
(32)

1x1 Conv
(32)

1x1 Conv
(32)

3x3 Conv
(32)

3x3 Conv
(32)

3x3 Conv
(32)

1x1 Conv
(256 Linear)

+

Relu activation

Relu activation

Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.
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Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Figure 10: Accuracy per parameter vs. network. Information density (accuracy per parameters) is an effi-
ciency metric that highlight that capacity of a specific architecture to better utilise its parametric space. Models
like VGG and AlexNet are clearly oversized, and do not take fully advantage of their potential learning abil-
ity. On the far right, ResNet-18, BN-NIN, GoogLeNet and ENet (marked by grey arrows) do a better job at
“squeezing” all their neurons to learn the given task, and are the winners of this section.

utilised, as seen in section 3.6. Since the power consumption is constant, we can even go one step
further, and obtain an upper bound in accuracy even for an energetic constraint, which could possibly
be an essential designing factor for a network that needs to run on an embedded system.

As the spoiler in section 3.1 gave already away, the linear nature of the accuracy vs. throughput
relationship translates into a hyperbolical one when the forward inference time is considered instead.
Then, given that the operations count is linear with the inference time, we get that the accuracy has
an hyperbolical dependency on the amount of computations that a network requires.

3.8 PARAMETERS UTILISATION

DNNs are known to be highly inefficient in utilising their full learning power (number of parameters
/ degrees of freedom). Prominent work (Han et al., 2015) exploits this flaw to reduce network
file size up to 50⇥, using weights pruning, quantisation and variable-length symbol encoding. It is
worth noticing that, using more efficient architectures to begin with may produce even more compact
representations. In figure 10 we clearly see that, although VGG has a better accuracy than AlexNet
(as shown by figure 1), its information density is worse. This means that the amount of degrees
of freedom introduced in the VGG architecture bring a lesser improvement in terms of accuracy.
Moreover, ENet (Paszke et al., 2016) — which we have specifically designed to be highly efficient
and it has been adapted and retrained on ImageNet (Culurciello, 2016) for this work — achieves the
highest score, showing that 24⇥ less parameters are sufficient to provide state-of-the-art results.

4 CONCLUSIONS

In this paper we analysed multiple state-of-the-art deep neural networks submitted to the ImageNet
challenge, in terms of accuracy, memory footprint, parameters, operations count, inference time
and power consumption. Our goal is to provide insights into the design choices that can lead to
efficient neural networks for practical application, and optimisation of the often-limited resources in
actual deployments, which lead us to the creation of ENet — or Efficient-Network — for ImageNet.
We show that accuracy and inference time are in a hyperbolic relationship: a little increment in
accuracy costs a lot of computational time. We show that number of operations in a network model
can effectively estimate inference time. We show that an energy constraint will set a specific upper
bound on the maximum achievable accuracy and model complexity, in terms of operations counts.
Finally, we show that ENet is the best architecture in terms of parameters space utilisation, squeezing
up to 13⇥ more information per parameter used respect to the reference model AlexNet, and 24⇥
respect VGG-19.

6

ImageNet Top 1 Accuracy Flops cost (area of circle is # params)

Accuracy (points) per flop 

Effect of topology innovation

Figure credit: Canziani et al 2017
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Improving accuracy/cost (image classification)

VGG-16 
GoogleNet 
ResNet-18 
MobileNet-224

71.5% 
70% 
73% 

70.5%

138M 
6.8M 

11.7M 
4.2M

15B 
1.5B 
1.8B 
0.6B

[2014] 
[2015] 
[2016] 
[2017]

*

*  10-crop results (ResNet 1-crop results are similar to other DNNs in this table)

ImageNet Top-1 
Accuracy Num Params

Cost/image 
(MADDs)

2014 →2017    ~ 25x improvement in cost at similar accuracy
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Depthwise separable convolution

NUM_CHANNELS 
inputs

NUM_CHANNELS 
inputs

Kw x Kh x NUM_CHANNELS 
weights (for each filter)

Kw x Kh x NUM_CHANNELS work per 
output pixel (per filter)

Convolution Layer Depthwise Separable Conv Layer

Kw x Kh weights 
(for each channel)

results of filtering each 
of NUM_CHANNELS 
independently

NUM_CHANNELS work per 
output pixel (per filter)

NUM_CHANNELS weights 
(for each filter)

Main idea: factor NUM_FILTERS  3x3xNUM_CHANNELS convolutions into: 
- NUM_CHANNELS 3x3x1 convolutions for each input channel 
- And NUM_FILTERS 1x1xNUM_CHANNELS convolutions to combine the results

Image credit: Eli Bendersky 
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
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MobileNet
Factor NUM_FILTERS 3x3xNUM_CHANNELS convolutions into: 

- NUM_CHANNELS 3x3x1 convolutions for each input channel 
- And NUM_FILTERS 1x1xNUM_CHANNELS convolutions to combine the results

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

[Howard et al. 2017]

Figure 4. This figure shows the trade off between computation
(Mult-Adds) and accuracy on the ImageNet benchmark. Note the
log linear dependence between accuracy and computation.

Figure 5. This figure shows the trade off between the number of
parameters and accuracy on the ImageNet benchmark. The colors
encode input resolutions. The number of parameters do not vary
based on the input resolution.

Figure 5 shows the trade off between ImageNet Ac-
curacy and number of parameters for the 16 models
made from the cross product of width multiplier ↵ 2
{1, 0.75, 0.5, 0.25} and resolutions {224, 192, 160, 128}.

Table 8 compares full MobileNet to the original
GoogleNet [30] and VGG16 [27]. MobileNet is nearly
as accurate as VGG16 while being 32 times smaller and
27 times less compute intensive. It is more accurate than
GoogleNet while being smaller and more than 2.5 times less
computation.

Table 9 compares a reduced MobileNet with width mul-
tiplier ↵ = 0.5 and reduced resolution 160⇥ 160. Reduced
MobileNet is 4% better than AlexNet [19] while being 45⇥
smaller and 9.4⇥ less compute than AlexNet. It is also 4%
better than Squeezenet [12] at about the same size and 22⇥
less computation.

Table 8. MobileNet Comparison to Popular Models
Model ImageNet Million Million

Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2

GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

Table 9. Smaller MobileNet Comparison to Popular Models
Model ImageNet Million Million

Accuracy Mult-Adds Parameters
0.50 MobileNet-160 60.2% 76 1.32

Squeezenet 57.5% 1700 1.25
AlexNet 57.2% 720 60

Table 10. MobileNet for Stanford Dogs
Model Top-1 Million Million

Accuracy Mult-Adds Parameters
Inception V3 [18] 84% 5000 23.2

1.0 MobileNet-224 83.3% 569 3.3
0.75 MobileNet-224 81.9% 325 1.9
1.0 MobileNet-192 81.9% 418 3.3
0.75 MobileNet-192 80.5% 239 1.9

Table 11. Performance of PlaNet using the MobileNet architec-
ture. Percentages are the fraction of the Im2GPS test dataset that
were localized within a certain distance from the ground truth. The
numbers for the original PlaNet model are based on an updated
version that has an improved architecture and training dataset.

Scale Im2GPS [7] PlaNet [35] PlaNet
MobileNet

Continent (2500 km) 51.9% 77.6% 79.3%
Country (750 km) 35.4% 64.0% 60.3%
Region (200 km) 32.1% 51.1% 45.2%

City (25 km) 21.9% 31.7% 31.7%
Street (1 km) 2.5% 11.0% 11.4%

4.3. Fine Grained Recognition
We train MobileNet for fine grained recognition on the

Stanford Dogs dataset [17]. We extend the approach of [18]
and collect an even larger but noisy training set than [18]
from the web. We use the noisy web data to pretrain a fine
grained dog recognition model and then fine tune the model
on the Stanford Dogs training set. Results on Stanford Dogs
test set are in Table 10. MobileNet can almost achieve the
state of the art results from [18] at greatly reduced compu-
tation and size.

4.4. Large Scale Geolocalizaton
PlaNet [35] casts the task of determining where on earth

a photo was taken as a classification problem. The approach
divides the earth into a grid of geographic cells that serve as
the target classes and trains a convolutional neural network

Figure 4. This figure shows the trade off between computation
(Mult-Adds) and accuracy on the ImageNet benchmark. Note the
log linear dependence between accuracy and computation.

Figure 5. This figure shows the trade off between the number of
parameters and accuracy on the ImageNet benchmark. The colors
encode input resolutions. The number of parameters do not vary
based on the input resolution.

Figure 5 shows the trade off between ImageNet Ac-
curacy and number of parameters for the 16 models
made from the cross product of width multiplier ↵ 2
{1, 0.75, 0.5, 0.25} and resolutions {224, 192, 160, 128}.

Table 8 compares full MobileNet to the original
GoogleNet [30] and VGG16 [27]. MobileNet is nearly
as accurate as VGG16 while being 32 times smaller and
27 times less compute intensive. It is more accurate than
GoogleNet while being smaller and more than 2.5 times less
computation.

Table 9 compares a reduced MobileNet with width mul-
tiplier ↵ = 0.5 and reduced resolution 160⇥ 160. Reduced
MobileNet is 4% better than AlexNet [19] while being 45⇥
smaller and 9.4⇥ less compute than AlexNet. It is also 4%
better than Squeezenet [12] at about the same size and 22⇥
less computation.

Table 8. MobileNet Comparison to Popular Models
Model ImageNet Million Million

Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2

GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

Table 9. Smaller MobileNet Comparison to Popular Models
Model ImageNet Million Million

Accuracy Mult-Adds Parameters
0.50 MobileNet-160 60.2% 76 1.32

Squeezenet 57.5% 1700 1.25
AlexNet 57.2% 720 60

Table 10. MobileNet for Stanford Dogs
Model Top-1 Million Million

Accuracy Mult-Adds Parameters
Inception V3 [18] 84% 5000 23.2

1.0 MobileNet-224 83.3% 569 3.3
0.75 MobileNet-224 81.9% 325 1.9
1.0 MobileNet-192 81.9% 418 3.3
0.75 MobileNet-192 80.5% 239 1.9

Table 11. Performance of PlaNet using the MobileNet architec-
ture. Percentages are the fraction of the Im2GPS test dataset that
were localized within a certain distance from the ground truth. The
numbers for the original PlaNet model are based on an updated
version that has an improved architecture and training dataset.

Scale Im2GPS [7] PlaNet [35] PlaNet
MobileNet

Continent (2500 km) 51.9% 77.6% 79.3%
Country (750 km) 35.4% 64.0% 60.3%
Region (200 km) 32.1% 51.1% 45.2%

City (25 km) 21.9% 31.7% 31.7%
Street (1 km) 2.5% 11.0% 11.4%

4.3. Fine Grained Recognition
We train MobileNet for fine grained recognition on the

Stanford Dogs dataset [17]. We extend the approach of [18]
and collect an even larger but noisy training set than [18]
from the web. We use the noisy web data to pretrain a fine
grained dog recognition model and then fine tune the model
on the Stanford Dogs training set. Results on Stanford Dogs
test set are in Table 10. MobileNet can almost achieve the
state of the art results from [18] at greatly reduced compu-
tation and size.

4.4. Large Scale Geolocalizaton
PlaNet [35] casts the task of determining where on earth

a photo was taken as a classification problem. The approach
divides the earth into a grid of geographic cells that serve as
the target classes and trains a convolutional neural network

Image classification (ImageNet) 
Comparison to Common DNNs

Image classification (ImageNet) 
Comparison to Other Compressed DNNs

3x3 Depthwise Conv

BN
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BN

ReLU

ReLU
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Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-
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Value of improving DNN topology
▪ Increasing overall accuracy on a task (often primary goal of CV/ML papers) 
▪ Increasing accuracy/unit cost 
▪ What is cost of evaluating DNN? 

- Number of ops (often measured in multiply adds) 
- Bandwidth! 

- Loading model weights + loading/storing intermediate activations 
- Careful! Certain layers are bandwidth bound, e.g., batch norm

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Depthwise separable convolutions add 
additional batch norm operations to network 
(after each step of depthwise conv layer)

Implication: number of ops can be a poor 
predictor of run time of network (too small 
to utilize processor, bandwidth bound, etc.)!
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Model optimization techniques
▪ Manually designing better models 

- Common parameters: depth of network, width of filters, number of 
filters per layer, convolutional stride, etc. 

▪ Good scheduling of performance-critical operations (layers) 

- Loop blocking/tiling, fusion 

- Typically optimized manually by humans (but significant research 
efforts to automate scheduling) 

▪ Compressing models 

- Lower bit precision 

- Automatic sparsification/pruning 

▪ Automatically discovering efficient model topologies (architecture search)
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DNN architecture search
▪ Learn an efficient DNN topology along with associated weights 
▪ Example: progressive neural architecture search [Liu et al. 18]

“Block” = (input1, input2, op1, op2)

Op1 Op2

+

input1 input2

Eight possible operations:

3x3 depthwise-separable conv 
5x5 depthwise-separable conv 
7x7 depthwise-separable conv 
1x7 followed by 7x1 conv

identity 
3x3 average pool 
3x3 max pool 
3x3 dilated conv
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Architecture search space
Cells are DAGs of B blocks

3x3 sep 5x5 sep

+

3x3 max 7x7 sep

+3x3 sep ident

+

concat

in0 in1 in2

DNNs are sequences of N cells

Cells have one output, can receive input from all prior cells

…

Cell N

Cell 1

Cell 2

[Liu et al. 18]
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Progressive neural architecture search results
▪ Automatic search was able to find model architectures that yielded similar/

better accuracy to hand designed models (and comparable costs)

▪ Forms of architecture search implemented by Cloud-based ML hosting 
services (user provides training data, service searches for good model)
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Why might a GPU be a good platform for 
DNN evaluation?
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Deep neural networks on GPUs

Facebook’s Big Sur

▪ Many high-performance DNN implementations target GPUs 
- High arithmetic intensity computations (computational characteristics similar to 

dense matrix-matrix multiplication) 
- Benefit from flop-rich architectures 
- Highly-optimized library of kernels exist for GPUs (cuDNN) 

- Most CPU-based implementations use basic matrix-multiplication-based 
formulation (good implementations could run faster!)
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Why might a GPU be a sub-optimal 
platform for DNN evaluation?
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Increasing efficiency through specialization

Intel has announced 
Lake Crest ML accelerator 
(formerly called Nervana)

Example: Google’s Tensor Processing Unit (TPU) 
Accelerates deep learning operations in Google 
datacenter
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Hardware acceleration for DNNs

Google TPU:

MIT Eyeriss

Huawei Kirin NPU

Slide credit: Xuan Yang

Volta GPU with 
Tensor Cores

Apple Neural Engine

Intel Lake Crest 
Deep Learning Accelerator
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And many more…

Image credit: Shan Tang [https://medium.com/@shan.tang.g/a-list-of-chip-ip-for-deep-learning-48d05f1759ae]

https://medium.com/@shan.tang.g/a-list-of-chip-ip-for-deep-learning-48d05f1759ae
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Modern NVIDIA GPU 
(Volta)
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Recall: properties of GPUs
▪ “Compute rich”: packed densely with processing elements 

- Good for compute-bound applications 

▪ Good, because dense-matrix multiplication and DNN convolutional 
layers (when implemented properly) are compute bound 

▪ But recall cost of instruction stream processing and control in a 
programmable processor:

[Figure credit Eric Chung]

Note: these figures are 
estimates for a CPU:
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One solution: more complex instructions
▪ Fused multiply add (ax + b) 

▪ 4-component dot product x = A dot B 

▪ 4x4 matrix multiply 
- AB + C  for 4x4 matrices A, B, C 

▪ Key principle: amortize cost of instruction stream processing 
across many operations of a single complex instruction 
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Volta GPU
Each SM core has: 
64 fp32 ALUs (mul-add) 
32 fp64 ALUs 
8 “tensor cores” 
Execute 4x4 matrix mul-add instr 
A x B + C  for 4x4 matrices A,B,C 
A, B stored as fp16, accumulation with fp32 C 

GV100 GPU has 80 SM cores: 
5,120 fp32 mul-add ALUs 
640 tensor cores 
6 MB of L2 cache 
1.5 GHz max clock 
= 15.7 TFLOPs fp32 
= 125 TFLOPs (fp16/32 mixed) in tensor 
cores

Single instruction to 
perform 2x4x4x4 + 4x4 ops
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Efficiency estimates *
▪ Estimated overhead of programmability (instruction stream, control, etc.) 

- Half-precision FMA (fused multiply-add) 

- Half-precision DP4 (vec4 dot product) 

- Half-precision MMA (matrix-matrix multiply + accumulate)

2000% 

500% 

27%

NVIDIA Xavier (SoC for automotive domain) 

Features a Computer Vision Accelerator (CVA), 
a custom module for deep learning 
acceleration (large matrix multiply unit) 

But only 2x more efficient than Volta MMA 
instruction despite being highly specialized 
component. (includes optimization of gating 
multipliers if either operand is zero)

* Estimates by Bill Dally using academic numbers, SysML talk, Feb 2018
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Google TPU 
(version 1)
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Google’s TPU

 

Hence, the TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to a GPU. 
 

 
 
Figure 1. ​TPU Block Diagram. The main computation part is the Figure 2. ​Floor Plan of TPU die. The shading follows Figure 1.  
yellow Matrix Multiply unit in the upper right hand corner. Its inputs The light (blue) data buffers are 37% of the die, the light (yellow)  
are the blue Weight FIFO and the blue Unified Buffer (UB) and its compute is 30%,  the medium (green) I/O is 10%, and the dark  
output is the blue Accumulators (Acc). The yellow Activation Unit (red) control is just 2%. Control is much larger (and much more  
performs the nonlinear functions on the Acc, which go to the UB. difficult to design) in a CPU or GPU 
 

The goal was to run whole inference models in the TPU to reduce interactions with the host CPU and to be flexible 
enough to match the NN needs of 2015 and beyond, instead of just what was required for 2013 NNs. Figure 1 shows the block 
diagram of the TPU.  

The TPU instructions are sent from the host over the PCIe Gen3 x16 bus into an instruction buffer. The internal blocks 
are typically connected together by 256-​byte​ -wide paths. Starting in the upper-right corner, the ​Matrix Multiply Unit ​ is the 
heart of the TPU. It contains 256x256 MACs that can perform 8-bit multiply-and-adds on signed or unsigned integers. The 
16-bit products are collected in the 4 MiB of 32-bit ​Accumulators​  below the matrix unit. The 4MiB represents 4096, 
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per clock cycle. We picked 4096 by 
first noting that the operations per byte need to reach peak performance (roofline knee in Section 4) is ~1350, so we rounded 
that up to 2048 and then duplicated it so that the compiler could use double buffering while running at peak performance. 

When using a mix of 8-bit weights and 16-bit activations (or vice versa), the Matrix Unit computes at half-speed, and it 
computes at a quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle and can perform either a 
matrix multiply or a convolution. The matrix unit holds one 64 KiB tile of weights plus one for double-buffering (to hide the 
256 cycles it takes to shift a tile in). This unit is designed for dense matrices. Sparse architectural support was omitted for 
time-to-deploy reasons. Sparsity will have high priority in future designs. 

The weights for the matrix unit are staged through an on-chip ​Weight FIFO​  that reads from an off-chip 8 GiB DRAM 
called ​Weight Memory​  (for inference, weights are read-only; 8 GiB supports many simultaneously active models). The weight 
FIFO is four tiles deep. The intermediate results are held in the 24 MiB on-chip ​Unified Buffer​ , which can serve as inputs to 
the Matrix Unit. A programmable DMA controller transfers data to or from CPU Host memory and the Unified Buffer. 

Figure 2 shows the floor plan of the TPU die. The 24 MiB Unified Buffer is almost a third of the die and the Matrix 
Multiply Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size was picked in part to match the 
pitch of the Matrix Unit on the die and, given the short development schedule, in part to simplify the compiler (see Section 7). 
Control is just 2%. Figure 3 shows the TPU on its printed circuit card, which inserts into existing servers like an SATA disk. 

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow the CISC tradition, including a repeat 
field. The average clock cycles per instruction (CPI) of these CISC instructions is typically 10 to 20. It has about a dozen 
instructions overall, but these five are the key ones: 

1. Read_Host_Memory​ reads data from the CPU host memory into the Unified Buffer (UB). 
2. Read_Weights​ reads weights from Weight Memory into the Weight FIFO as input to the Matrix Unit. 
3. MatrixMultiply/Convolve​ causes the Matrix Unit to perform a matrix multiply or a convolution from the 

Unified Buffer into the Accumulators. A matrix operation takes a variable-sized B*256 input, multiplies it by a 
256x256 constant weight input, and produces a B*256 output, taking B pipelined cycles to complete. 
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Figure credit: Jouppi et al. 2017
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TPU area proportionality
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Compute ~ 30% of chip 
Note low area footprint of control 

Key instructions: 
read host memory 
write host memory 
read weights 
matrix_multiply / convolve 
activate
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO
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w02

w03

w10

w11

w12

w13
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w23

w30

w31

w32

w33
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Accumulators (32-bit)
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(matrix vector multiplication example: y=Wx)
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Systolic array

PE PE PE PE
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PE PE PE PE

Accumulators (32-bit)
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Weights FIFO

w00
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w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0

(matrix vector multiplication example: y=Wx)
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Systolic array

PE PE PE PE

PE PE PE PE
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PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO
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w13
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w22
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w32
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x0

x0 * w10

x0 * w00 + 
x1 * w01

x1

(matrix vector multiplication example: y=Wx)
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Systolic array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 

x3

x1

x0 * w10 + 
x1 * w11

x0 * w20

(matrix vector multiplication example: y=Wx)
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Systolic array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 + 
x1 * w11 + 
x2 * w12 + 

x3

x1

x0 * w20 + 
x1 * w21

x0 * w30

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 
x3 * w03 

(matrix vector multiplication example: y=Wx)
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Systolic array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w10 + 
x01 * w11 + 
x02 * w12 + 

x03

x01

x00 * w20 + 
x01 * w21

x00 * w30

x00 * w00 + 
x01 * w01 + 
x02 * w02 + 
x03 * w03 

x12

x13

x11

x10

x10 * w10 + 
x11 * w11 + 
x12 * w12 + 

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 + 
x11 * w21

x20 * w20 + 
x21 * w21

Notice: need multiple 4x32bit 
accumulators to hold output columns

(matrix vector multiplication example: y=Wx)
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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TPU Performance/Watt

 

 
Figure 8. ​Figures 5-7 combined into a single log-log graph. Stars are for the TPU, triangles are for the K80, and circles are for Haswell. All 
TPU stars are at or above the other 2 rooflines. 

 
 
Figure 9. ​Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to CPU server, and TPU server to GPU 
server (orange bar).  TPU’ is an improved TPU (Sec. 7). The green bar shows its ratio to the CPU server and the lavender bar shows its 
relation to the GPU server. Total includes host server power, but incremental doesn’t. GM and WM are the geometric and weighted  means. 
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GM = geometric mean over all apps 
WM = weighted mean over all apps

total = cost of host machine + CPU  
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017
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Course Wrap Up

(Students)
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For the foreseeable future, the primary way to obtain higher 
performance computing hardware is through a combination of 
increased parallelism and hardware specialization.

Intel Xeon Phi 
72 cores, 16-wide SIMD, 4-way multi-threading

NVIDIA Maxwell GPU 
(single SMM core) 

32 wide SIMD 
2048 CUDA/core threads per SMM

Apple A9 
Heterogeneous SoC 

multi-core CPU + multi-
core GPU + media ASICs

FPGA 
(reconfigurable logic)

GeForce GTX 980 Whitepaper 

GM204 HARDWARE ARCHITECTURE 

IN-DEPTH 
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from 32 to 64. Again, thanks to the added benefit of higher clocks, pixel fill-rate is actually more than 

double that of GTX 680: 72 Gpixels/sec for GTX 980 versus 32.2 Gpixels/sec for GTX 680. 

The memory subsystem has also been significantly revamped. GTX 980’s memory clock is over 15% 
higher than GTX 680, and GM204’s cache is larger and more efficient than Kepler’s design, reducing the 
number of memory requests that have to be made to DRAM. Improvements in our implementation of 

memory compression provide a further benefit in reducing DRAM traffic—effectively amplifying the raw 

DRAM bandwidth in the system.  

Maxwell Streaming Multiprocessor 

The SM is the heart of our GPUs. Almost 

every operation flows through the SM at 

some point in the rendering pipeline. 

Maxwell GPUs feature a new SM that’s 
been designed to provide dramatically 

improved performance per watt than prior 

GeForce GPUs.  

Compared to GPUs based on our Kepler 

architecture, Maxwell’s new SMM design 

has been reconfigured to improve 

efficiency. Each SMM contains four warp 

schedulers, and each warp scheduler is 

capable of dispatching two instructions per 

warp every clock. Compared to Kepler’s 
scheduling logic, we’ve integrated a 

number of improvements in the scheduler 

to further reduce redundant re-

computation of scheduling decisions, 

improving energy efficiency. We’ve also 
integrated a completely new datapath 

organization. Whereas Kepler’s SM shipped 
with 192 CUDA Cores—a non-power-of-two 

organization—the Maxwell SMM is 

partitioned into four distinct 32-CUDA core 

processing blocks (128 CUDA cores total 

per SM), each with its own dedicated 

resources for scheduling and instruction 

buffering. This new configuration in 

Maxwell aligns with warp size, making it 

easier to utilize efficiently and saving area 

Figure 3: GM204 SMM Diagram (GM204 also features 4 DP units per 
SMM, which are not depicted on this diagram) 

CPU 
core

CPU 
core

CPU 
core

CPU 
core

Integrated 
Gen9 GPU 

graphics + 
media

Intel Core i7 CPU + integrated GPU and media
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Today’s software is surprisingly inefficient 
compared to the capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get 
more complex, and parallel processing capability grows) 

Extracting this performance stands to provide a notable impact on many compute-
intensive fields (or, more importantly enable new applications of computing!) 

Given current software programming systems and tools, understanding how a parallel 
machine works is important to achieving high performance. 

A major challenge going forward is making it simpler for programmers to extract 
performance on these complex machines.
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This is very important given how exciting 
(and efficiency-critical) the next generation of 
computing applications are likely to be.
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Key issues we have addressed in this course

Identifying parallelism 
(or conversely, identifying dependencies) 

Efficiently scheduling parallelism 
1. Achieving good workload balance 

2. Overcoming communication constraints: 
Bandwidth limits, dealing with latency, synchronization 

Exploiting data/computation locality = efficiently managing state! 
3. Scheduling under heterogeneity (using the right processor for the job) 

We discussed these issues at many scales and in many contexts
Heterogeneous mobile SoC 
Single chip, multi-core CPU 

Multi-core GPU 
CPU+GPU connected via bus 

Clusters of machines 
Large scale, multi-node supercomputers
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Key issues we have addressed in this course

Abstractions for thinking about efficient code 
Data parallel thinking 
Functional parallelism 

Transactions 
Tasks 

How throughput-oriented hardware works 
Multiple cores, hardware-threads, SIMD 

Specialization 
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After taking this course, 
you are ready to try 

undergraduate research 
in parallel computing!
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Why research (or independent study)?
▪ You will learn way more about a topic than in any class. 

▪ You think your undergrad friends are very smart?  Come hang out 
with Stanford Ph.D. students! (you get to work side-by-side with 
them and with faculty).  Imagine what level you might rise to. 

▪ It’s way more fun to be on the cutting edge.  Industry might not 
even know about what you are working on.  (imagine how much 
more valuable you are if you can teach them) 

▪ It widens your mind as to what is possible.
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Example: what my own Ph.D. students are 
working on these days…
▪ Generating efficient code from image processing or deep learning DSLs, and 

compiling these applications directly to FGPAs 

▪ Designing a new shading language for future real-time 3D graphics pipelines 
(collaboration with NVIDIA) 

▪ Parallel computing platforms that make it simpler and more efficient to 
analyzing large video collections (Scanner project: “Spark for video”) 

▪ Designing programming models for querying video collections (e.g, find frames 
with “three people around a table” or where DNN1 disagrees with DNN2) 

▪ Designing more efficient DNNs to accelerate image processing on video 

▪ Parallel rendering using 1000’s of CPU cores in the cloud 

▪ Analyzing 230,000 hours of news video for biases in representation. 
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Thanks for being a great class! 

Good luck on your finals! 

p.s. See you in a week! 


