Lecture 16:

Domain-Specific Programming Systems

Parallel Computing
Stanford CS149, Fall 2019
Tunes

Larkin Poe

“Ain’t Gonna Cry”

“Rebecca broke down saying she didn’t have the energy to retune her CUDA code for ARM Neon. I said, c’mon sis, start writing your code at a higher level of abstraction in DSLs.”

- Megan Lovell
Code performance: relative to C (single core)

GCC -O3 (no manual vector optimizations)

- Blue = NBody
- Green = Mandlebrot
- Orange = Tree Alloc/Delloc
- Red = Power method (compute eigenvalue)

Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org
Recall: even good single-threaded C code is inefficient on a modern multi-core CPU

Recall Assignment 1’s Mandelbrot program
Consider execution on this laptop: quad-core, Intel Core i7, AVX...

Single core, with AVX vector instructions: 5.8x speedup over C code
Multi-core + hyper-threading + AVX instructions: ~30-40x speedup

Conclusion: basic C implementation compiled with -O3 leaves a lot of performance on the table
Power-constrained computing

- Power limits how many transistors you can turn on at a time

- Supercomputers/datacenters are power constrained
 - Due to shear scale of machine
 - Overall cost to operate (power for machine and for cooling)

- Mobile devices are power constrained
 - Limited battery life
 - Heat dissipation
Computing system power

$$Power = Energy_{\text{op}} \times \frac{\text{Ops}}{\text{second}}$$
Need for efficiency motivates heterogeneous parallelism

Why specialize hardware? To maximize compute capability given constraints on chip area, energy consumption. Result: amazingly high compute capability in a wide range of devices!

Integrated CPU + GPU

GPU: throughput cores + fixed-function

CPU+data-parallel accelerator

Qualcomm Snapdragon SoC 800 PROCESSOR

Mobile system-on-a-chip: CPU+GPU+media processing
Choosing the right tool for the job

Energy-optimized CPU

Throughput-oriented processor (GPU)

Programmable DSP

FPGA/reconfigurable logic

ASIC

Video encode/decode, Audio playback, Camera RAW processing, neural nets (future?)

~10X more efficient

~100X???

(jury still out)

~100-1000X more efficient

Easiest to program

Difficult to program

Not programmable + costs 10-100’s millions of dollars to design / verify / create

Credit: Pat Hanrahan for this slide design
Heterogeneous processing for efficiency

- Heterogeneous parallel processing: use a mixture of computing resources that fit mixture of needs of target applications
 - Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized fixed-function processors
 - Examples exist throughout modern computing: mobile processors, servers, supercomputers

- Traditional rule of thumb in “good system design” is to design simple, general-purpose components
 - This is not the case in emerging systems (optimized for perf/watt)
 - Today: want collection of components that meet perf requirement AND minimize energy use

- Challenge of using these resources effectively is pushed up to the programmer
 - Current CS research challenge: how to write efficient, portable programs for emerging heterogeneous architectures?
Hardware diversity (needed for efficiency) presents a huge challenge to programmers

- Different machines have very different performance characteristics (different numbers/types of cores, different specialized cores, etc.)

- Different technologies and performance characteristics within the same machine at different scales
 - Within a core: SIMD, multi-threading, fine-granularity sync and communication
 - Across cores in one machine: coherent shared memory via fast on-chip network
 - Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
 - Across racks: distributed memory, multi-stage network
Different programming models emerge to abstract different hardware characteristics

- **Within a core**: SIMD, multi-threading, atomic instructions
 - Abstractions: threads, SPMD programming (ISPC, CUDA, OpenCL, Metal)

- **Across cores**: coherent shared memory via fast on-chip network
 - Abstractions: threads, OpenMP pragma’s, Cilk, TBB

- **Hybrid CPU+GPU multi-core**: incoherent (potentially) shared memory
 - Abstractions: CUDA, OpenCL

- **Across machines**: distributed memory
 - Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

Credit: Pat Hanrahan
EXPERT PROGRAMMERS ⇒ LOW PRODUCTIVITY
Hardware diversity (needed for efficiency) presents a huge challenge (for software portability)

- To be efficient, software must be optimized for the characteristics of target hardware
 - Difficult even in the case of one level of one machine
 - Combinatorial complexity of optimizations when considering a complex machine, or different machines

- Result: loss of software portability
 - All the hard work you do for one parallel computer often needs to get redone for a new type of computer

Credit: Pat Hanrahan
Open computer science question:

How do we enable programmers to productively write software that efficiently uses current and future heterogeneous, parallel machines?
The ideal parallel programming language

- **Performance**
- **Productivity**
- **Generality**
Successful languages (not exhaustive ;-))
Here: definition of success = widely used
Growing interest in domain-specific programming systems
To realize high performance and productivity: willing to sacrifice completeness
Domain-specific programming systems

- Main idea: raise level of abstraction for expressing programs
 - Goal: write one program, and run it efficiently on different machines

- Introduce high-level programming primitives specific to an application domain
 - **Productive:** intuitive to use, portable across machines, primitives correspond to behaviors frequently used to solve problems in targeted domain
 - **Performant:** system uses domain knowledge to provide efficient, optimized implementation(s)
 - Given a machine: system knows what algorithms to use, parallelization strategies to employ for this domain
 - Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself can be optimized to the abstractions as well

- **Cost:** loss of generality/completeness
Two domain-specific programming examples

1. Halide: for image processing

2. Liszt: for scientific computing on meshes

What are other domain specific languages?
(SQL is another good example)
DSL Example:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]
Halide used in practice

- Halide used to implement Google Pixel Photos app
- Halide code used to process images uploaded to Google Photos
A quick tutorial on high-performance image processing
void fast_blur(const Image &in, Image &blurred) {
 _m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {
 _m128i a, b, c, sum, avg;
 _m128i tmp[(256/8) * (32+2)];
 for (int xTile = 0; xTile < in.width(); xTile += 256) {
 _m128i *tmpPtr = tmp;
 for (int y = -1; y < 32+1; y++) {
 const uint16_t *inPtr = &(in(xTile, yTile+y));
 for (int x = 0; x < 256; x += 8) {
 a = _mm_loadu_si128((__m128i*)(inPtr-1));
 b = _mm_loadu_si128((__m128i*)(inPtr+1));
 c = _mm_load_si128((__m128i*)(inPtr));
 sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
 avg = _mm_mulhi_epi16(sum, one_third);
 _mm_store_si128(tmpPtr++, avg);
 inPtr += 8;
 }
 }
 tmpPtr = tmp;
 for (int y = 0; y < 32; y++) {
 _m128i *outPtr = (___m128i*)(blurred(xTile, yTile+y));
 for (int x = 0; x < 256; x += 8) {
 a = _mm_load_si128(tmpPtr+(2*256)/8);
 b = _mm_load_si128(tmpPtr+256/8);
 c = _mm_load_si128(tmpPtr++);
 sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
 avg = _mm_mulhi_epi16(sum, one_third);
 _mm_store_si128(outPtr++, avg);
 }
 }
 }
 }
}}}}

Stanford CS149, Fall 2019
What does this C code do?

```c
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH + i] = tmp;
    }
}
```
3x3 box blur

(Zoom view)
3x3 image blur

int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
 1.f/9, 1.f/9, 1.f/9,
 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}
Two-pass blur

A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations.

Input	Horizontal Blur	Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is 30x30 blur, not 3x3)
Two-pass 3x3 blur

```c
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int ii=0; ii<3; ii++)
            tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
        tmp_buf[j*WIDTH + i] = tmp;
    }

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
        output[j*WIDTH + i] = tmp;
    }
}
```

Total work per image = 6 x WIDTH x HEIGHT
For NxN filter: 2N x WIDTH x HEIGHT
WIDTH x HEIGHT extra storage
2X lower arithmetic intensity than 2D blur
Two-pass image blur: locality

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image and must write each element of output image.

Data from input reused three times. (immediately reused in next two i-loop iterations after first load, never loaded again.)
- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image data are accessed in between)
- Never load required data more than once… if cache has capacity for three rows of image
- Perfect use of cache lines (don’t load unnecessary data into cache)

int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}
Two-pass image blur, “chunked” (version 1)

```c
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {
    for (int j2=0; j2<3; j2++)
        for (int i=0; i<WIDTH; i++) {
            float tmp = 0.f;
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
            tmp_buf[j2*WIDTH + i] = tmp;
        }
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
        output[j*WIDTH + i] = tmp;
    }
}
```

- Only 3 rows of intermediate buffer need to be allocated
- Produce 3 rows of tmp_buf (only what’s needed for one row of output)
- Combine them together to get one row of output
- Total work per row of output:
 - step 1: 3 x 3 x WIDTH work
 - step 2: 3 x WIDTH work
- Total work per image = 12 x WIDTH x HEIGHT
- Loads from tmp_buffer are cached (assuming tmp_buffer fits in cache)
Two-pass image blur, “chunked” (version 2)

```c
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+=CHUNK_SIZE) {
    for (int j2=0; j2<CHUNK_SIZE+2; j2++)
        for (int i=0; i<WIDTH; i++) {
            float tmp = 0.f;
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
            tmp_buf[j2*WIDTH + i] = tmp;
        }
    for (int j2=0; j2<CHUNK_SIZE; j2++)
        for (int i=0; i<WIDTH; i++) {
            float tmp = 0.f;
            for (int jj=0; jj<3; jj++)
                tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
            output[(j+j2)*WIDTH + i] = tmp;
        }
}
```

Sized so entire buffer fits in cache (capture all producer-consumer locality)

Produce enough rows of tmp_buf to produce a CHUNK_SIZE number of rows of output

Produce CHUNK_SIZE rows of output

Total work per chunk of output:
(assume CHUNK_SIZE = 16)
- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT = 6.4 x WIDTH x HEIGHT

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!
Still not done

- We have not parallelized loops for multi-core execution
- We have not used SIMD instructions to execute loops bodies
- Other basic optimizations: loop unrolling, etc...
Optimized C++ code: 3x3 image blur

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

```cpp
void fast_blur(const Image &in, Image &blurred) {
    _m128i one_third = _mm_set1_epi16(21846);
    #pragma omp parallel for
    for (int yTile = 0; yTile < in.height(); yTile += 32) {
        _m128i a, b, c, sum, avg;
        _m128i tmp[(256/8)*(32+2)];
        for (int xTile = 0; xTile < in.width(); xTile += 256) {
            _m128i *tmpPtr = tmp;
            for (int y = -1; y < 32+1; y++) {
                const uint16_t *inPtr = &(in(xTile, yTile+y));
                for (int x = 0; x < 256; x += 8) {
                    a = _mm_loadu_si128((._m128i*)(inPtr-1));
                    b = _mm_loadu_si128((._m128i*)(inPtr+1));
                    c = _mm_load_si128((._m128i*)(inPtr));
                    sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                    avg = _mm_mulhi_epi16(sum, one_third);
                    _mm_store_si128(tmpPtr++, avg);
                    tmpPtr += 8;
                }
            }
        }
    }
    tmpPtr = tmp;
    for (int y = 0; y < 32; y++) {
        _m128i *outPtr = (_m128i *)&(blurred(xTile, yTile+y));
        for (int x = 0; x < 256; x += 8) {
            a = _mm_load_si128(tmpPtr+(2*256)/8);
            b = _mm_load_si128(tmpPtr+256/8);
            c = _mm_load_si128(tmpPtr++);
            sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
            avg = _mm_mulhi_epi16(sum, one_third);
            _mm_store_si128(outPtr++, avg);
        }
    }
}
```
Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:800,0:600)
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Halide function: an infinite (but discrete) set of values defined on N-D domain
Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the values of other functions.
Key aspects of representation

- Intuitive expression:
 - Adopts local “point wise” view of expressing algorithms
 - Halide language is declarative. It does not define order of iteration, or what values in domain are stored!
 - It only defines what is needed to compute these values.
 - Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 800x600
Halide::Buffer<uint8_t> result = out.realize(800, 600);
Real-world image processing pipelines feature complex sequences of functions

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Number of Halide functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-pass blur</td>
<td>2</td>
</tr>
<tr>
<td>Unsharp mask</td>
<td>9</td>
</tr>
<tr>
<td>Harris Corner detection</td>
<td>13</td>
</tr>
<tr>
<td>Camera RAW processing</td>
<td>30</td>
</tr>
<tr>
<td>Non-local means denoising</td>
<td>13</td>
</tr>
<tr>
<td>Max-brightness filter</td>
<td>9</td>
</tr>
<tr>
<td>Multi-scale interpolation</td>
<td>52</td>
</tr>
<tr>
<td>Local-laplacian filter</td>
<td>103</td>
</tr>
<tr>
<td>Synthetic depth-of-field</td>
<td>74</td>
</tr>
<tr>
<td>Bilateral filter</td>
<td>8</td>
</tr>
<tr>
<td>Histogram equalization</td>
<td>7</td>
</tr>
<tr>
<td>VGG-16 deep network eval</td>
<td>64</td>
</tr>
</tbody>
</table>

Real-world production applications may feature hundreds to thousands of functions! Google HDR+ pipeline: over 2000 Halide functions.
Key aspect in the design of any system:
Choosing the “right” representations for the job

Now the job is not expressing an image processing computation, but generating an efficient implementation of a specific Halide program.
A second set of representations for “scheduling”

```cpp
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");

// the “algorithm description” (declaration of what to do)
blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3.0f;
out(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
```

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler.
Specifying loop iteration order and parallelism

\[
\text{blurx}(x,y) = \frac{\text{in}(x-1, y) + \text{in}(x,y) + \text{in}(x+1,y)}{3.0f};
\]
\[
\text{out}(x,y) = \frac{\text{blurx}(x,y-1) + \text{blurx}(x,y) + \text{blurx}(x,y+1)}{3.0f};
\]

Given this schedule for the function “out”...

\[
\text{out}.\text{tile}(x, y, xi, yi, 256, 32).\text{vectorize}(xi,8).\text{parallel}(y);
\]

Halide compiler will generate this parallel, vectorized loop nest for computing elements of out...

\[
\text{for } y=0 \text{ to } \text{num_tiles_y}: \quad \text{// parallelize this loop over multiple threads}
\]
\[
\text{for } x=0 \text{ to } \text{num_tiles_x}:
\]
\[
\text{for } yi=0 \text{ to } 32:
\]
\[
\text{// vectorize body of this loop with SIMD instructions}
\]
\[
\text{for } xi=0 \text{ to } 256 \text{ by } 8:
\]
\[
\text{idx_x} = x*256+xi;
\]
\[
\text{idx_y} = y*32+yi
\]
\[
\text{out}(\text{idx_x, idx_y}) = ...
\]
Primitives for how to interleave producer/consumer processing

\[
\text{blurx}(x,y) = \frac{(\text{in}(x-1, y) + \text{in}(x,y) + \text{in}(x+1,y))}{3.0f};
\]
\[
\text{out}(x,y) = \frac{(\text{blurx}(x,y-1) + \text{blurx}(x,y) + \text{blurx}(x,y+1))}{3.0f};
\]

\text{out.tile}(x, y, xi, yi, 256, 32);

\text{blurx.compute_root();}

\text{allocate buffer for all of blur}(x,y)\
\text{for } y=0 \text{ to HEIGHT:}\
\quad \text{for } x=0 \text{ to WIDTH:}\
\quad \quad \text{blurx}(x,y) = \ldots

\text{for } y=0 \text{ to num_tiles_y:}\
\quad \text{for } x=0 \text{ to num_tiles_x:}\
\quad \quad \text{for } yi=0 \text{ to 32:}\
\quad \quad \quad \text{for } xi=0 \text{ to 256:}\
\quad \quad \quad \quad \text{idx}_x = x*256+xi;\
\quad \quad \quad \quad \text{idx}_y = y*32+yi\
\quad \quad \quad \quad \text{out}(\text{idx}_x, \text{idx}_y) = \ldots

\text{Do not compute blurx within out's loop nest.}
\text{Compute all of blurx, then all of out}

\text{all of blurx is computed here}

\text{values of blurx consumed here}
Primitives for how to interleave producer/consumer processing

\[
\text{blurx}(x,y) = \left(\text{in}(x-1, y) + \text{in}(x,y) + \text{in}(x+1,y) \right) / 3.0f;
\]
\[
\text{out}(x,y) = \left(\text{blurx}(x,y-1) + \text{blurx}(x,y) + \text{blurx}(x,y+1) \right) / 3.0f;
\]
\[
\text{out}.\text{tile}(x, y, xi, yi, 256, 32);
\]

Compute necessary elements of blurx within out’s xi loop nest

\[
\text{blurx}\.\text{compute}_\text{at}(\text{out}, \text{xi});
\]

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

allocate 3-element buffer for tmp_blurx

// compute 3 elements of blurx needed for out(idx_x, idx_y) here
for (blur_x=0 to 3)
 tmp_blurx(blur_x) = ...

out(idx_x, idx_y) = ...

Note: Halide compiler performs analysis that the output of each iteration of the xi loop required 3 elements of blurx
Primitives for how to interleave producer/consumer processing

\[
\text{blurx}(x,y) = \frac{(\text{in}(x-1, y) + \text{in}(x,y) + \text{in}(x+1,y))}{3.0f};
\]

\[
\text{out}(x,y) = \frac{(\text{blurx}(x,y-1) + \text{blurx}(x,y) + \text{blurx}(x,y+1))}{3.0f};
\]

\[
\text{out}.\text{tile}(x, y, x_i, y_i, 256, 32);
\]

\[
\text{blurx}.\text{compute}_\text{at}(\text{out, x});
\]

for \(y = 0 \) to \(\text{num_tiles_y} \):
 for \(x = 0 \) to \(\text{num_tiles_x} \):
 allocate 258x34 buffer for tile blurx
 for \(y_i = 0 \) to \(32+2 \):
 for \(x_i = 0 \) to \(256+2 \):
 \(\text{tmp}_\text{blurx}(x_i, y_i) = \) // compute blurx from in

 for \(y_i = 0 \) to \(32 \):
 for \(x_i = 0 \) to \(256 \):
 \(\text{id}_x = x*256+x_i; \)
 \(\text{id}_y = y*32+y_i \)
 \(\text{out}(\text{id}_x, \text{id}_y) = \ldots \)
Summary of scheduling the 3x3 box blur

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2 BY 8:
 // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8

 for yi=0 to 32:
 for xi=0 to 256 BY 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = ... // compute out from blurx using 8-wide
 // SIMD instructions here
What is the philosophy of Halide

- **Programmer** is responsible for describing an image processing algorithm
- **Programmer** has knowledge to schedule application efficiently on machine (but it’s slow and tedious), so give programmer a language to express high-level scheduling decisions
 - Loop structure of code
 - Unrolling / vectorization / multi-core parallelization

- **The system** (Halide compiler) is not smart, it provides the service of mechanically carrying out the details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX intrinsics, etc.)
Constraints on language
(to enable compiler to provide desired services)

- Application domain scope: computation on regular N-D domains
- Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)
- All dependencies inferable by compiler
Initial academic Halide results

- **Camera RAW processing pipeline**
 (Convert RAW sensor data to RGB image)
 - Original: 463 lines of hand-tuned ARM NEON assembly
 - Halide: 2.75x less code, 5% faster

- **Bilateral filter**
 (Common image filtering operation used in many applications)
 - Original: 122 lines of C++
 - Halide: 34 lines algorithm + 6 lines schedule
 - CPU implementation: 5.9x faster
 - GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]
Halide used in practice

- Halide used to implement camera processing pipeline
 - HDR+, aspects of portrait mode, etc...
- Industry usage at Instagram, Adobe, etc.
Stepping back: what is Halide?

- Halide is a DSL for helping expert developers optimize image processing code more rapidly
 - Halide does not decide how to optimize a program for a novice programmer
 - Halide provides primitives for a programmer (that has strong knowledge of code optimization) to rapidly express what optimizations the system should apply
 - Halide compiler carries out the nitty-gritty of mapping that strategy to a machine
Automatically generating Halide schedules

- Problem: it turned out that very few programmers have the ability to write good Halide schedules
 - 80+ programmers at Google write Halide
 - Very small number trusted to write schedules

- Recent work: Halide compiler analyzes programs to automatically generate efficient schedules that are faster than those created by most programmers in the world
 - “Learning to Optimize Halide with Tree Search and Random Programs,” Adams et al. SIGGRAPH 2019
Darkroom/Rigel

Goal: directly synthesize FGPA implementation of image processing pipelines from a high-level description (a constrained “Halide-like” language)

Seeking very-high efficiency image processing
Another DSL example: (only if time in class)
Lizst: a language for solving PDE’s on meshes

[DeVito et al. Supercomputing 11, SciDac ’11]

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu/
What a Liszt program does

A Liszt program is run on a mesh
A Liszt program defines, and computes the value of, fields defined on the mesh

Position is a field defined at each mesh vertex. The field’s value is represented by a 3-vector.

val Position = FieldWithConst[Vertex, Float3](0.f, 0.f, 0.f)
val Temperature = FieldWithConst[Vertex, Float](0.f)
val Flux = FieldWithConst[Vertex, Float](0.f)
val JacobiStep = FieldWithConst[Vertex, Float](0.f)

Color key:
Fields
Mesh entity

Side note:
Fields are a higher-kindred type
(special function that maps a type to a new type)
Liszt program: heat conduction on mesh

Program computes the value of fields defined on meshes

```
var i = 0;
while ( i < 1000 ) {
    Flux(vertices(mesh)) = 0.f;
    JacobiStep(vertices(mesh)) = 0.f;
    for (e <- edges(mesh)) {
        val v1 = head(e)
        val v2 = tail(e)
        val dP = Position(v1) - Position(v2)
        val dT = Temperature(v1) - Temperature(v2)
        val step = 1.0f/(length(dP))
        Flux(v1) += dT*step
        Flux(v2) -= dT*step
        JacobiStep(v1) += step
        JacobiStep(v2) += step
    }
    i += 1
}
```

Given edge, loop body accesses/modifies field values at adjacent mesh vertices

Access value of field at mesh vertex v2

Color key:
- Fields
- Mesh
- Topology functions
- Iteration over set

Stanford CS149, Fall 2019
Liszt’s topological operators

Used to access mesh elements relative to some input vertex, edge, face, etc. Topological operators are the only way to access mesh data in a Liszt program. Notice how many operators return sets (e.g., “all edges of this face”)

BoundarySet1(ME \leftarrow MeshElement)(name : String) : Set[ME]
vertices(e : Mesh) : Set[Vertex]

- cells(e : Mesh) : Set[Cell]
- edges(e : Mesh) : Set[Edge]
- faces(e : Mesh) : Set[Face]

vertices(e : Vertex) : Set[Vertex]

- cells(e : Vertex) : Set[Cell]
- edges(e : Vertex) : Set[Edge]
- faces(e : Vertex) : Set[Face]

cells(e : Cell) : Set[Cell]
vertices(e : Cell) : Set[Vertex]

- faces(e : Cell) : Set[Face]
- edges(e : Cell) : Set[Edge]

vertices(e : Edge) : Set[Vertex]

- facesCCW2(e : Edge) : Set[Face]
- cells(e : Edge) : Set[Cell]

- head(e : Edge) : Vertex
tail(e : Edge) : Vertex
flip4(e : Edge) : Edge
towards5(e : Edge, t : Vertex) : Edge

- cells(e : Face) : Set[Cell]
- edgesCCW3(e : Face) : Set[Edge]

- vertices(e : Face) : Set[Vertex]
inside3(e : Face) : Cell
outside3(e : Face) : Cell
flip4(e : Face) : Face
towards5(e : Face, t : Cell) : Face
Liszt programming

- A Liszt program describes operations on fields of an abstract mesh representation
- Application specifies type of mesh (regular, irregular) and its topology
- Mesh representation is chosen by Liszt (not by the programmer)
 - Based on mesh type, program behavior, and target machine

Well, that’s interesting. I write a program, and the compiler decides what data structure it should use based on what operations my code performs.
Compiling to parallel computers

Recall challenges you have faced in your assignments

1. Identify parallelism
2. Identify data locality
3. Reason about what synchronization is required

Now consider how to automate this process in the Liszt compiler.
Key: determining program dependencies

1. Identify parallelism
 - Absence of dependencies implies code can be executed in parallel

2. Identify data locality
 - Partition data based on dependencies

3. Reason about required synchronization
 - Synchronization is needed to respect dependencies (must wait until the values a computation depends on are known)

In general programs, compilers are unable to infer dependencies at global scale:

Consider: \(a[f(i)] += b[i]; \)

(must execute \(f(i) \) to know if dependency exists across loop iterations \(i \))
Liszt is constrained to allow dependency analysis

Liszt infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop
= dependencies for the iteration

Statically analyze code to find stencil of each top-level `for` loop
- Extract nested mesh element reads
- Extract field operations

```scala
for (e <- edges(mesh)) {
  val v1 = head(e)
  val v2 = tail(e)
  val dP = Position(v1) - Position(v2)
  val dT = Temperature(v1) - Temperature(v2)
  val step = 1.0f/(length(dP))
  Flux(v1) += dT*step
  Flux(v2) -= dT*step
  JacobiStep(v1) += step
  JacobiStep(v2) += step
}
...```

Edge 6’s read stencil is D and F
Restrict language for dependency analysis

Language restrictions:

- Mesh elements are only accessed through built-in topological functions:
  \[ \text{cells} (\text{mesh}), \ldots \]

- Single static assignment: (immutable values)
  \[ \text{val } v1 = \text{head} (e) \]

- Data in fields can only be accessed using mesh elements:
  \[ \text{Pressure} (v) \]

- No recursive functions

Restrictions allow compiler to automatically infer stencil for a loop iteration
Portable parallelism: compiler uses knowledge of dependencies to implement different parallel execution strategies

I’ll discuss two strategies…

Strategy 1: mesh partitioning

Strategy 2: mesh coloring
Imagine compiling a Lizst program to a cluster (multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?
Distributed memory implementation of Liszt

Mesh + Stencil $\rightarrow$ Graph $\rightarrow$ Partition

```scala
for(f <- faces(mesh)) {
 rhoOutside(f) =
 calc_flux(f, rho(outside(f))) +
 calc_flux(f, rho(inside(f)))
}
```

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)
Each processor also needs data for neighboring cells to perform computation ("ghost cells"). Listz allocates ghost region storage and emits required communication to implement topological operators.
Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)
GPU implementation: parallel reductions

In previous example, one region of mesh assigned per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Edges (each edge assigned to 1 CUDA thread)

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
```

Flux field values (stored per vertex)

```cpp
for (e <- edges(mesh)) {
 ...
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 ...
}
```

Different edges share a vertex: requires atomic update of per-vertex field data
GPU implementation: conflict graph

Edges (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

Identify mesh edges with colliding writes (lines in graph indicate presence of collision)

Can simply run program once to get this information. (results remain valid for subsequent executions provided mesh does not change)
GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

“Color” nodes in graph such that no connected nodes have the same color

Can execute on GPU in parallel, without atomic operations, by running all nodes with the same color in a single CUDA launch.
Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)

**Euler**

- 23M cell mesh

**Navier-Stokes**

- 21M cell mesh

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown)
But uses a different algorithm when compiled to GPU! (graph coloring)
Liszt summary

- **Productivity**
  - Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist thinks about already!)
  - Intuitive topological operators

- **Portability**
  - Same code runs on large cluster of CPUs and GPUs (and combinations thereof!)

- **High performance**
  - Language is constrained to allow compiler to track dependencies
  - Used for locality-aware partitioning (distributed memory implementation)
  - Used for graph coloring to avoid sync (GPU implementation)
  - Compiler chooses different parallelization strategies for different platforms
  - System can customize mesh representation based on application and platform (e.g., don’t store edge pointers if code doesn’t need it, choose struct of arrays vs. array of structs for per-vertex fields)
Many other recent domain-specific programming systems

**Hadoop**
Less domain specific than examples given today, but still designed specifically for: data-parallel computations on big data for distributed systems (“Map-Reduce”)

**GraphLab**
DSL for graph-based machine learning computations
Also see Ligra
(DSLs for describing operations on graphs)

**Rails**
Model-view-controller paradigm for web-applications

**OpenGL**
Language for real-time 3D graphics

**TensorFlow**
DSL for defining deep neural networks and training/inference computations on those networks

**Julia**
Numerical computing

**Ongoing efforts in many domains...**
Languages for physical simulation: Simit [MIT], Ebb [Stanford]
Opt: a language for non-linear least squares optimization [Stanford]
Summary

- Modern machines: parallel and heterogeneous
  - Only way to increase compute capability in energy-constrained world

- Most software uses small fraction of peak capability of machine
  - Very challenging to tune programs to these machines
  - Tuning efforts are not portable across machines

- Domain-specific programming environments trade-off generality to achieve productivity, performance, and portability
  - Case study today: Halide
  - Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize efficient implementations