
Parallel Computing
Stanford CS149, Fall 2019

Lecture 15:

Heterogeneous Parallelism 
and Hardware Specialization 



Stanford CS149, Fall 2019

I want to begin this lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel 
implementation of a compute-bound application is about 40 times 

faster on my quad-core laptop than the output of single-threaded C code 
compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is, 
even if you are using it as efficiently as possible.



Stanford CS149, Fall 2019

You need to buy a 
new computer…



Stanford CS149, Fall 2019

You need to buy a computer system

Core Core

Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.

Which do you pick?



Stanford CS149, Fall 2019

Recall Amdahl’s law

f = fraction of program that is parallelizable
n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto n processors of equal capability



Stanford CS149, Fall 2019

Rewrite Amdahl’s law in terms of resource limits

f = fraction of program that is parallelizable
n = total processing resources (e.g., transistors on a chip)
r = resources dedicated to each processing core,

(each of the n/r cores has sequential performance perf(r)

Two examples where n=16
rA = 4
rB = 1

Speedup relative to processor with 1 unit of 
resources, n=1
Assume perf(1) = 1

[Hill and Marty 08]

More general form of 
Amdahl’s Law in terms 
of  f, n, r



Stanford CS149, Fall 2019

Speedup (relative to n=1) 

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload
Each graph plots performance as resource allocation changes, but total chip 
resources resources are kept the same (constant n per graph)

perf(r)modeled as 

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Figure credit: Hill and Marty 08]

11



Stanford CS149, Fall 2019

Asymmetric set of processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example: n=16
One core: r = 4
Other 12 cores: r = 1

(of heterogeneous processor with n
recourses, relative to uniprocessor with 
one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

[Hill and Marty 08]



Stanford CS149, Fall 2019

Speedup (relative to n=1)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r = 1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

(chip from prev. slide)

[Source: Hill and Marty 08]



Stanford CS149, Fall 2019

Heterogeneous processing
Observation: most “real world” applications have complex 
workload characteristics

They have components that can 
be widely parallelized.

And components that are 
difficult to parallelize.

They have components that are 
amenable to wide SIMD 
execution.

And components that are not.
(divergent control flow)

They have components with 
predictable data access

And components with unpredictable 
access, but those accesses might 
cache well.

Idea: the most efficient processor is a heterogeneous mixture of 
resources (“use the most efficient tool for the job”)



Stanford CS149, Fall 2019

Examples of heterogeneity



Stanford CS149, Fall 2019

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture) 

4 CPU cores + graphics cores + media accelerators

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers) 



Stanford CS149, Fall 2019

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture) 

▪ CPU cores and graphics cores share 
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between 
CPU and integrated GPU

▪ Graphics cores are cache coherent 
with CPU cores

CPU
core

CPU
core CPU

core

CPU
core

Integrated
Gen9 GPU

graphics + 
media

Shared LLC

System
Agent

(display,
memory,

I/O)



Stanford CS149, Fall 2019

More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics



Stanford CS149, Fall 2019

15in Macbook Pro /w Touch Bar (2016)

From ifixit.com teardown

AMD Radeon 450 Pro GPU

Quad-core Intel Core i7 CPU 
(“Skylake”)
(contains integrated GPU)

(two GPUs)



Stanford CS149, Fall 2019

Mobile heterogeneous processors

Apple A11 Bionic *
Two “high performance” 64 bit ARM CPU cores
Four “low performance” ARM CPU cores
Three “core” Apple-designed GPU
Image processor
Neural Engine for DNN acceleration
Motion processor 

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A11 image credit: TechInsights Inc.’
* Disclaimer: estimates by TechInsights, not an official Apple reference.



Stanford CS149, Fall 2019

Supercomputers use heterogeneous processing
Los Alamos National Laboratory: “Roadrunner”
Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS
Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as “accelerator” to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatt (about 2,400 average US homes)



Stanford CS149, Fall 2019

GPU-accelerated supercomputing

Summit (at Oak Ridge National Lab)
(world’s #1 in Fall 2018)
9,216 IBM Power9 22-core CPUs
27,648 NVIDIA V100 GPUs
10 Petabytes DRAM



Stanford CS149, Fall 2019

Intel Xeon Phi (Knights Landing)
▪ 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)
▪ 16-wide vector instructions (AVX-512), four threads per core
▪ Targeted as an accelerator for supercomputing applications



Stanford CS149, Fall 2019

Heterogeneous architectures for supercomputing
201 Petaflops (peak),
143 Petaflops (effective)
9.7 MWatt
(14.6 GFLOPS/W)

Source: Top500.org Fall 2018 rankings

Xeon Phi

GPU

GPU

GPU

GPU



Stanford CS149, Fall 2019

Green500: most energy efficient supercomputers

Source: Green500 Fall 2018 rankings

Efficiency metric: effective GFLOPS per Watt



Stanford CS149, Fall 2019

Energy-constrained computing
▪ Supercomputers are energy constrained
- Due to shear scale of machine

- Overall cost to operate (power for machine and for cooling)
▪ Datacenters are energy constrained
- Reduce cost of cooling

- Reduce physical space requirements
▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation



Stanford CS149, Fall 2019

Energy-constrained computing



Stanford CS149, Fall 2019

Limits on chip power consumption
▪ General mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is 
required for more than just maximizing battery life)

Po
w

er

Time

Electrical limit:  max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp 
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power 
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote 

iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours



Stanford CS149, Fall 2019

Mobile: benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once
▪ Run at a fixed level of performance for longer

- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding 
phone up to ear

Google Glass: ~40 min 
recording per charge 
(nowhere near “always on”)



Stanford CS149, Fall 2019

Modern computing: efficiency often matters 
more than in the past, not less

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-flash/

http://www.apple.com/hotnews/thoughts-on-flash/


Stanford CS149, Fall 2019

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)



Stanford CS149, Fall 2019

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]



Stanford CS149, Fall 2019

Why is a “general-purpose processor” so 
inefficient?

Wait… this entire class we’ve been talking about making 
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?



Stanford CS149, Fall 2019

Consider the complexity of executing an 
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc. 

Address translation, communicate with icache, access icache, etc. 

Review question:
How does SIMD execution reduce overhead of certain 
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]



Stanford CS149, Fall 2019

Contrast that complexity to the circuit 
required to actually perform the operation

0

1

2
3

4

5

6
7

0

1

2
3

4

5

6
7

0

1

2
3

4

5

6
7

Example: 8-bit logical OR



Stanford CS149, Fall 2019

H.264 video encoding: fraction of energy consumed by 
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown



Stanford CS149, Fall 2019[Chung et al. MICRO 2010]
lg2(N)  (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N)  (data set size)

ASIC delivers same performance as 
one CPU core with ~ 1/1000th the 
chip area.

GPU cores: ~ 5-7 times more area 
efficient than CPU cores.

ASIC delivers same performance 
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy 
benefits of specialization



Stanford CS149, Fall 2019

GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-specific, fixed-

function compute resources



Stanford CS149, Fall 2019

Rasterization:
Determining what pixels a triangle overlaps 

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces 

Geometric tessellation:
computing fine-scale geometry 
from coarse geometry



Stanford CS149, Fall 2019

Anton supercomputer for 
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

▪ Custom, low-latency communication

network designed for communication patterns 
of N-body simulations

[Developed by DE Shaw Research]



Stanford CS149, Fall 2019

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer 
architecture research conferences on the 
topic  of ASICs or accelerators for deep 
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)



Stanford CS149, Fall 2019

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths 
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image 
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different 
operations to do at once (contrast to SIMD) 

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in 
Google Pixel phone



Stanford CS149, Fall 2019

Original iPhone touchscreen controller

From US Patent Application 2006/0097991

Separate digital signal processor to interpret raw signal from capacitive touch sensor (do not burden main CPU)



Stanford CS149, Fall 2019

Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit 
multiply-add ALUs

▪ ~10-20x more efficient than 
GPU at image processing tasks
(Google’s claims at HotChips ’18)



Stanford CS149, Fall 2019

Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for 

transfer to high-res screen)

Image Signal Processor 
ASIC for processing camera 

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon” 
Programmable DSP
data-parallel multi-media 

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator



Stanford CS149, Fall 2019

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014



Stanford CS149, Fall 2019

Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining 
outputs of eight LUT6’s (delay = 3)



Stanford CS149, Fall 2019

Project Catapult
▪ Microsoft Research investigation of use of 

FPGAs to accelerate datacenter workloads
▪ Demonstrated offload of part of Bing search’s 

document ranking logic 

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]



Stanford CS149, Fall 2019

Amazon F1
▪ FPGA’s are now available on Amazon cloud services



Stanford CS149, Fall 2019

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP
FPGA/

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is 

active area of research)

Not programmable +
costs 10-100’s millions 

of dollars to design / 
verify / create



Stanford CS149, Fall 2019

Challenges of heterogeneous designs:

(it’s not easy to realize the potential of
specialized, heterogeneous processing)



Stanford CS149, Fall 2019

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task
▪ Challenge to software developer: how to map application 

onto a heterogeneous collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose into 

components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system 

▪ Challenge for hardware designer: what is the right mixture of 
resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

- How much chip area should be dedicated to a specific function, like video?



Stanford CS149, Fall 2019

Pitfalls of heterogeneous designs

Consider a two stage graphics pipeline:
Stage 1: rasterize triangles into pixel fragments (using ASIC)
Stage 2: compute color of fragments (on SIMD cores)

Let’s say you under-provision the rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer to achieve throughput T fragments/clock
But really needed throughput of 1.2T to keep the cores busy (should have used 1.2% of chip area for rasterizer)

Now the programmable cores only run at 80% efficiency (99% of chip is idle 20% of the time = same perf as 79% smaller chip!)
So tendency is to be conservative and over-provision fixed-function components (diminishing their advantage)

[Molnar 2010]

Triangle
Rasterizer

Rasterize

Shade



Stanford CS149, Fall 2019

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data 



Stanford CS149, Fall 2019

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.)
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy 
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm


Stanford CS149, Fall 2019

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts 
may not be desirable even if they run faster  

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode, 

image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, new instructions for 

accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before 

transferring to memory (likely to see fixed-function HW to reduce overhead of general data 
compression/decompression)



Stanford CS149, Fall 2019

Summary: heterogeneous processing for efficiency
▪ Heterogeneous parallel processing: use a mixture of computing resources 

that fit mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized 

fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, 
general-purpose components
- This is not the case in emerging systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the 
programmer
- Current CS research challenge: how to write efficient, portable programs for emerging 

heterogeneous architectures?


