
Parallel Computing
Stanford CS149, Fall 2019

Lecture 13:

Fine-grained Synchronization &
Lock-free Programming

Stanford CS149, Fall 2019

Tunes

Yeah Yeah Yeahs
“Heads Will Roll”

“Have you seen implementations of lock-free data structures in
non- garbage collected languages? ”

- Karen O

Stanford CS149, Fall 2019

Deadlock
Livelock

Starvation

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Some terminology

Stanford CS149, Fall 2019

Deadlock
Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Deadlock can arise when each operation
has acquired a shared resource that
another operation needs.

In a deadlock situations, there is no way
for any thread (or, in this illustration, a
car) to make progress unless some thread
relinquishes a resource (“backs up”)

Stanford CS149, Fall 2019

Traffic deadlock

Non-technical side note for car-owning students:
Deadlock happens all the %$*** time in SF.

(However, deadlock can be amusing when a bus
driver decides to let another driver know they have
caused deadlock... “go take cs149 you fool!”)

Stanford CS149, Fall 2019

More illustrations of deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

Stanford CS149, Fall 2019

Deadlock in computer systems

B

A

Thread A produces work for B’s work queue

Thread B produces work for A’s work queue

Queues are finite and workers wait if
no output space is available

const int numEl = 1024;
float msgBuf1[numEl];
float msgBuf2[numEl];

int threadId getThreadId();

... do work ...

MsgSend(msgBuf1, numEl * sizeof(int), threadId+1, ...
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Every thread sends a message (blocking send)
to the thread with the next higher id

Then thread receives message from thread with
next lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

Stanford CS149, Fall 2019

Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for other
resources it needs to complete an operation

3. No preemption: processors don’t give up resources until operation they
wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle exists
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

Stanford CS149, Fall 2019

Livelock

Stanford CS149, Fall 2019

Livelock

Stanford CS149, Fall 2019

Livelock

Stanford CS149, Fall 2019

Livelock
Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Can you think of a good daily life
example of livelock?

Computer system examples:

Operations continually abort and retry

Stanford CS149, Fall 2019

Starvation
State where a system is making overall
progress, but some processes make no
progress.
(green cars make progress, but yellow cars are
stopped)

Starvation is usually not a permanent
state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow
cars) must yield to traffic moving up/down (green cars)

Stanford CS149, Fall 2019

Ok, let’s get started…

Stanford CS149, Fall 2019

Warm up (and review)
// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {
 int old = *addr;
 *addr = (old == compare) ? val : old;
 return old;
}

Let’s build a lock using compare and swap:

typedef int lock;

void lock(Lock* l) {
 while (atomicCAS(l, 0, 1) == 1);
}

void unlock(Lock* l) {
 *l = 0;
}

The following is potentially more
efficient under contention: Why?
void lock(Lock* l) {
 while (1) {
 while(*l == 1);
 if (atomicCAS(l, 0, 1) == 0)
 return;
 }
}

Stanford CS149, Fall 2019

Example: a sorted linked list
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 n->next = cur;
 prev->next = n;
}

void delete(List* list, int value) {

 // assume case of deleting first node in list
 // is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

What can go wrong if multiple threads
operate on the linked list simultaneously?

Stanford CS149, Fall 2019

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

Stanford CS149, Fall 2019

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

Stanford CS149, Fall 2019

Example: simultaneous insertion/deletion
Thread 1 attempts to insert 6
Thread 2 attempts to delete 10

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

Possible result: (thread 2 finishes delete first)

3 5 10

6

Stanford CS149, Fall 2019

Solution 1: protect the list with a single lock

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 lock(list->lock);

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }
 n->next = cur;
 prev->next = n;
 unlock(list->lock);
}

void delete(List* list, int value) {

 lock(list->lock);

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 unlock(list->lock);
 return;
 }

 prev = cur;
 cur = cur->next;
 }
 unlock(list->lock);
}

struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
 Lock lock;
};

Per-list lock

Stanford CS149, Fall 2019

Single global lock per data structure

▪ Good:
- It is relatively simple to implement correct mutual

exclusion for data structure operations (we just did it!)

▪ Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

Stanford CS149, Fall 2019

Challenge: who can do better?
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

3 5 10 11 18

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 prev->next = n;
 n->next = cur;
}

void delete(List* list, int value) {

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

Stanford CS149, Fall 2019

Hand-over-hand traversal

Credit: (Hal Boedeker, Orlanda Sentinel) American Ninja Warrior

Stanford CS149, Fall 2019

T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

Stanford CS149, Fall 2019

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking

Stanford CS149, Fall 2019

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

Stanford CS149, Fall 2019

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

Stanford CS149, Fall 2019

Solution 2: fine-grained locking
struct Node {
 int value;
 Node* next;
 Lock* lock;
};

struct List {
 Node* head;
 Lock* lock;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert before head handled
 // here (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;

 lock(prev->lock);
 unlock(list->lock);

 cur = prev->next;
 if (cur) lock(cur->lock);

 while (cur) {
 if (cur->value > value)
 break;

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }

 n->next = cur;
 prev->next = n;

 unlock(prev->lock);
 if (cur) unlock(cur->lock);
}

void delete(List* list, int value) {

 // assume case of delete head handled here
 // (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;

 lock(prev->lock);
 unlock(list->lock);

 cur = prev->next;
 if (cur) lock(cur->lock)

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 unlock(prev->lock);
 unlock(cur->lock);
 delete cur;
 return;
 }

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }
 unlock(prev->lock);
}

Challenge to students: there is way to further
improve the implementation of insert(). What is it?

Stanford CS149, Fall 2019

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock
- In previous linked-list example: a single monolithic lock is overly conservative

(operations on different parts of the linked list can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required
- Deadlock? (Self-check: in the linked-list example from the prior slides, why do you

immediately that the code is deadlock free?)
- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now

involves memory writes)
- Extra storage cost (a lock per node)
- What is a middle-ground solution that trades off some parallelism for reduced

overhead? (hint: similar issue to selection of task granularity)

Stanford CS149, Fall 2019

Practice exercise (on your own time)
▪ Implement a fine-grained locking implementation of a

binary search tree supporting insert and delete

struct Tree {
 Node* root;
};

struct Node {
 int value;
 Node* left;
 Node* right;
};

void insert(Tree* tree, int value);
void delete(Tree* tree, int value);

Stanford CS149, Fall 2019

Lock-free data structures

Stanford CS149, Fall 2019

Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other

threads from completing operations on a shared data structure
indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.
- Now, no other threads can complete operations on the data structure (although thread 0 is

not actively making progress modifying it)

▪ An algorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

Stanford CS149, Fall 2019

Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is

guaranteed to make progress (“systemwide progress”)
- In lock-free case, it is not possible to preempt one of the threads at an

inopportune time and prevent progress by rest of system

- Note: this definition does not prevent starvation of any one thread

Stanford CS149, Fall 2019

Single reader, single writer bounded queue *
struct Queue {
 int data[N];
 int head; // head of queue
 int tail; // next free element
};

void init(Queue* q) {
 q->head = q->tail = 0;
}

// return false if queue is full
bool push(Queue* q, int value) {

 // queue is full if tail is element before head
 if (q->tail == MOD_N(q->head - 1))
 return false;

 q->data[q->tail] = value;
 q->tail = MOD_N(q->tail + 1);
 return true;
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 // if not empty
 if (q->head != q->tail) {
 *value = q->data[q->head];
 q->head = MOD_N(q->head + 1);

 return true;
 }
 return false;
}

▪ Only two threads (one producer, one consumer) accessing queue at the same time
▪ Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Fall 2019

Single reader, single writer unbounded queue *
struct Node {
 Node* next;
 int value;
};

struct Queue {
 Node* head;
 Node* tail;
 Node* reclaim;
};

void init(Queue* q) {
 q->head = q->tail = q->reclaim = new Node;
}

void push(Queue* q, int value) {

 Node* n = new Node;
 n->next = NULL;
 n->value = value;

 q->tail->next = n;
 q->tail = q->tail->next;

 while (q->reclaim != q->head) {
 Node* tmp = q->reclaim;
 q->reclaim = q->reclaim->next;
 delete tmp;

 }
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 if (q->head != q->tail) {
 *value = q->head->next->value;
 q->head = q->head->next;

 return true;
 }
 return false;
}

▪ Tail points to last element added (if non-empty)
▪ Head points to element BEFORE head of queue
▪ Node allocation and deletion performed by the same thread (producer thread)

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Fall 2019

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)
tailreclaim

3 10
head

pop (returns 10)
tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim

3 10

reclaim, head

10

push 5 (triggers reclaim)

5
tail

Stanford CS149, Fall 2019

Lock-free stack (first try)
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 Node* old_top = s->top;
 if (old_top == NULL)
 return NULL;
 Node* new_top = old_top->next;
 if (compare_and_swap(&s->top, old_top, new_top) == old_top)
 return old_top;
 }
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.

Note difference from fine-grained locking: In fine-grained locking, the implementation locked a part
of a data structure. Here, threads do not hold lock on data structure at all.
* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

Stanford CS149, Fall 2019

The ABA problem
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)
complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

Careful: On this slide A, B, C, and D are addresses
of nodes, not value stored by the nodes!

Stanford CS149, Fall 2019

Lock-free stack using counter for ABA soln
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 int pop_count = s->pop_count;
 Node* top = s->top;
 if (top == NULL)
 return NULL;
 Node* new_top = top->next;
 if (double_compare_and_swap(&s->top, top, new_top,
 &s->pop_count, pop_count, pop_count+1))
 return top;
 }
}

▪ Maintain counter of pop operations
▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS
▪ Could also solve ABA problem with careful node allocation and/or element reuse policies

test to see if either have changed (assume
function returns true if no changes)

Stanford CS149, Fall 2019

Compare and swap on x86
▪ x86 supports a “double-wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used on the previous slide

- But could simply ensure the stack’s count and top fields are contiguous in
memory to use the 64-bit wide single compare-and-swap instruction below.

▪ cmpxchg8b
- “compare and exchange eight bytes”

- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
- “compare and exchange 16 bytes”

- Can be used for compare-and-swap of two 64-bit values

Stanford CS149, Fall 2019

Another problem: referencing freed memory
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = s->top;

 if (old.top == NULL)
 return NULL;

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack))
 int value = old.top->value;
 delete old.top;
 return value;
 }
 }
}

old top might have been freed at this point
(by some other thread that popped it)

Stanford CS149, Fall 2019

Hazard pointer: avoid freeing a node until it’s known
that all other threads do not hold reference to it

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = hazard = s->top;

 if (old.top == NULL) {
 return NULL;
 }

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack)) {
 int value = old.top->value;
 retire(old.top);
 return value;
 }
 hazard = NULL;
 }
}

// delete nodes if possible
void retire(Node* ptr) {
 push(retireList, ptr);
 retireListSize++;

 if (retireListSize > THRESHOLD)
 for (each node n in retireList) {
 if (n not pointed to by any
 thread’s hazard pointer) {
 remove n from list
 delete n;
 }
 }
}

struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

// per thread ptr (node that cannot
// be deleted since the thread is
// accessing it)
Node* hazard;

// list of nodes this thread must
// delete (this is a per thread list)
Node* retireList;
int retireListSize;

Stanford CS149, Fall 2019

Lock-free linked list insertion *
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

// insert new node after specified node
void insert_after(List* list, Node* after, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert into empty list handled
 // here (keep code on slide simple for class discussion)

 Node* prev = list->head;

 while (prev->next) {
 if (prev == after) {
 while (1) {
 Node* old_next = prev->next;
 n->next = old_next;
 if (compare_and_swap(&prev->next, old_next, n) == old_next)
 return;
 }
 }

 prev = prev->next;
 }
}

Compared to fine-grained
locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert. Delete is more complex.

Stanford CS149, Fall 2019

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure

Consider case where B is deleted simultaneously with insertion of E after B.

B now points to E, but B is not in the list!

For the curious:

- Harris 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists”
- Fomitchev 2004. “Lock-free linked lists and skip lists”

A B C D

E

X
CAS succeeds
on A->next

CAS succeeds
on B->next

Stanford CS149, Fall 2019

Lock-free vs. locks performance comparison

Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free”
fg = “fine grained lock”

Stanford CS149, Fall 2019

In practice: why lock free data-structures?
▪ When optimizing parallel programs in this class you often assume

that only your program is using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc.

▪ In these cases, well-written code with locks can sometimes be as fast
(or faster) than lock-free code

▪ But there are situations where code with locks can suffer from tricky
performance problems
- Situations where a program features many threads (e.g., database, webserver) and page

faults, pre-emption, etc. can occur while a thread is in a critical section
- Locks create problems like priority inversion, convoying, crashing in critical section, etc.

that are often discussed in OS classes

Stanford CS149, Fall 2019

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid overheads
due to locks
- But can be tricky to implement (and ensuring correctness in a lock-free setting has its own

overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

Stanford CS149, Fall 2019

Preview: transactional memory
▪ Q. What was the role of the compare and swap in our lock-free

implementations?

▪ A. Determining if another thread had modified the data structure
while the calling thread was in the middle of an operation.

▪ Next time… transactional memory
- A more general mechanism to allow a system to speculate that

an operation will be successfully completed before another
thread attempts to modify the structure

- With mechanisms to “abort” an operation in the event another
thread does.

Stanford CS149, Fall 2019

Preview: transactional memory
atomic

{ // begin transaction

 perform atomic computation here ...

} // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no
synchronization was necessary. (it speculates!)

System provides hardware/software support for “rolling back” all loads and
stores in the critical region if it detects (at run-time) that another thread has
entered same region at the same time.

Stanford CS149, Fall 2019

More reading on lock-free structures
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms

- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

▪ Michael Sullivan’s Relaxed Memory Calculus (RMC) compiler

- https://github.com/msullivan/rmc-compiler

▪ Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

