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Fine-grained Synchronization & 
Lock-free Programming
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Tunes

Yeah Yeah Yeahs 
“Heads Will Roll”

“Have you seen implementations of lock-free data structures in 
non- garbage collected languages? ” 

- Karen O
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Deadlock 
Livelock 

Starvation 

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Some terminology
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Deadlock
Deadlock is a state where a system has 
outstanding operations to complete, but 
no operation can make progress.  

Deadlock can arise when each operation 
has acquired a shared resource that 
another operation needs. 

In a deadlock situations, there is no way 
for any thread (or, in this illustration, a 
car) to make progress unless some thread 
relinquishes a resource (“backs up”)
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Traffic deadlock

Non-technical side note for car-owning students:  
Deadlock happens all the %$*** time in SF. 

(However, deadlock can be amusing when a bus 
driver decides to let another driver know they have 
caused deadlock... “go take cs149 you fool!”)
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More illustrations of deadlock

Credit: David Maitland, National Geographic 

Why are these examples of deadlock?
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Deadlock in computer systems

B

A

Thread A produces work for B’s work queue

Thread B produces work for A’s work queue

Queues are finite and workers wait if 
no output space is available

const int numEl = 1024; 
float msgBuf1[numEl]; 
float msgBuf2[numEl]; 

int threadId getThreadId(); 

... do work ... 

MsgSend(msgBuf1, numEl * sizeof(int), threadId+1, ... 
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Every thread sends a message (blocking send) 
to the thread with the next higher id 

Then thread receives message from thread with 
next lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)
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Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a given resource at once 

2. Hold and wait: processor must hold the resource while waiting for other 
resources it needs to complete an operation 

3. No preemption: processors don’t give up resources until operation they 
wish to perform is complete 

4. Circular wait:  waiting processors have mutual dependencies (a cycle exists 
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)
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Livelock
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Livelock
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Livelock
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Livelock
Livelock is a state where a system is 
executing many operations, but no 
thread is making meaningful progress. 

Can you think of a good daily life 
example of livelock? 

Computer system examples: 

Operations continually abort and retry 
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Starvation
State where a system is making overall 
progress, but some processes make no 
progress. 
(green cars make progress, but yellow cars are 
stopped) 

Starvation is usually not a permanent 
state 
(as soon as green cars pass, yellow cars can go) 

In this example: assume traffic moving left/right (yellow 
cars) must yield to traffic moving up/down (green cars)



Stanford CS149, Fall 2019

Ok, let’s get started…
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Warm up (and review)
// atomicCAS: 
// atomic compare and swap performs the following logic atomically  
int atomicCAS(int* addr, int compare, int val) { 
   int old = *addr; 
   *addr = (old == compare) ? val : old; 
   return old; 
}

Let’s build a lock using compare and swap:

typedef int lock; 

void lock(Lock* l) { 
  while (atomicCAS(l, 0, 1) == 1); 
} 

void unlock(Lock* l) { 
  *l = 0; 
}

The following is potentially more 
efficient under contention: Why?
void lock(Lock* l) { 
  while (1) { 
     while(*l == 1); 
     if (atomicCAS(l, 0, 1) == 0) 
        return; 
  } 
}
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Example: a sorted linked list
struct Node { 
   int value; 
   Node* next; 
};

struct List { 
  Node* head; 
};

void insert(List* list, int value) { 

   Node* n = new Node; 
   n->value = value; 

   // assume case of inserting before head of 
   // of list is handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value > value) 
       break; 
  
     prev = cur; 
     cur = cur->next; 
   } 

   n->next = cur;  
   prev->next = n; 
}

void delete(List* list, int value) { 

   // assume case of deleting first node in list 
   // is handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value == value) { 
       prev->next = cur->next; 
       delete cur; 
       return; 
     } 

     prev = cur; 
     cur = cur->next; 
   } 
}

What can go wrong if multiple threads 
operate on the linked list simultaneously?
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Example: simultaneous insertion
Thread 1 attempts to insert 6 
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6
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Example: simultaneous insertion
Thread 1 attempts to insert 6 
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.  
Result: one of the insertions gets lost!  

Result: (assuming thread 1 updates prev->next before thread 2)  

3 5 10 11 18

7
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Example: simultaneous insertion/deletion
Thread 1 attempts to insert 6 
Thread 2 attempts to delete 10

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

Possible result: (thread 2 finishes delete first)

3 5 10

6
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Solution 1: protect the list with a single lock

void insert(List* list, int value) { 

   Node* n = new Node; 
   n->value = value; 

   lock(list->lock); 

   // assume case of inserting before head of 
   // of list is handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value > value) 
       break; 

     prev = cur; 
     cur = cur->next; 
   } 
   n->next = cur; 
   prev->next = n; 
   unlock(list->lock); 
}

void delete(List* list, int value) { 

   lock(list->lock); 

   // assume case of deleting first element is 
   // handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value == value) { 
       prev->next = cur->next; 
       delete cur; 
       unlock(list->lock); 
       return; 
     } 

     prev = cur; 
     cur = cur->next; 
   } 
   unlock(list->lock); 
}

struct Node { 
   int value; 
   Node* next; 
};

struct List { 
  Node* head; 
  Lock  lock; 
};

Per-list lock
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Single global lock per data structure

▪ Good: 
- It is relatively simple to implement correct mutual 

exclusion for data structure operations (we just did it!) 

▪ Bad: 
- Operations on the data structure are serialized 
- May limit parallel application performance
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Challenge: who can do better?
struct Node { 
   int value; 
   Node* next; 
};

struct List { 
  Node* head; 
};

3 5 10 11 18

void insert(List* list, int value) { 

   Node* n = new Node; 
   n->value = value; 

   // assume case of inserting before head of 
   // of list is handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value > value) 
       break; 
  
     prev = cur; 
     cur = cur->next; 
   } 

   prev->next = n; 
   n->next = cur; 
}

void delete(List* list, int value) { 

   // assume case of deleting first element is 
   // handled here (to keep slide simple) 

   Node* prev = list->head; 
   Node* cur = list->head->next; 

   while (cur) { 
     if (cur->value == value) { 
       prev->next = cur->next; 
       delete cur; 
       return; 
     } 

     prev = cur; 
     cur = cur->next; 
   } 
}
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Hand-over-hand traversal

Credit: (Hal Boedeker, Orlanda Sentinel) American Ninja Warrior
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T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur
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T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11) 
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking
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T1T1

3 5 10 18

Thread 0: delete(11) 
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking
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T1

3 5 18

Thread 0: delete(11) 
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking
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Solution 2: fine-grained locking
struct Node { 
   int value; 
   Node* next; 
   Lock* lock; 
};

struct List { 
  Node* head; 
  Lock* lock; 
};

void insert(List* list, int value) { 

   Node* n = new Node; 
   n->value = value; 

   // assume case of insert before head handled 
   // here (to keep slide simple) 

   Node* prev, *cur; 

   lock(list->lock); 
   prev = list->head; 
  
   lock(prev->lock); 
   unlock(list->lock); 
  
   cur = prev->next; 
   if (cur) lock(cur->lock); 
  
   while (cur) { 
     if (cur->value > value) 
        break; 
      
     Node* old_prev = prev; 
     prev = cur; 
     cur = cur->next; 
     unlock(old_prev->lock); 
     if (cur) lock(cur->lock); 
   } 

   n->next = cur;  
   prev->next = n; 

   unlock(prev->lock); 
   if (cur) unlock(cur->lock); 
}

void delete(List* list, int value) { 

   // assume case of delete head handled here 
   // (to keep slide simple) 

   Node* prev, *cur; 
    
   lock(list->lock); 
   prev = list->head; 

   lock(prev->lock); 
   unlock(list->lock);  

   cur = prev->next; 
   if (cur) lock(cur->lock) 

   while (cur) { 
     if (cur->value == value) { 
       prev->next = cur->next; 
       unlock(prev->lock); 
       unlock(cur->lock); 
       delete cur;  
       return; 
     } 

     Node* old_prev = prev; 
     prev = cur; 
     cur = cur->next; 
     unlock(old_prev->lock); 
     if (cur) lock(cur->lock); 
   } 
   unlock(prev->lock); 
}

Challenge to students: there is way to further 
improve the implementation of insert().  What is it?
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Fine-grained locking
▪ Goal: enable parallelism in data structure operations 

- Reduces contention for global data structure lock 
- In previous linked-list example: a single monolithic lock is overly conservative 

(operations on different parts of the linked list can proceed in parallel) 

▪ Challenge: tricky to ensure correctness 
- Determining when mutual exclusion is required 
- Deadlock?  (Self-check: in the linked-list example from the prior slides, why do you 

immediately that the code is deadlock free?) 
- Livelock? 

▪ Costs? 
- Overhead of taking a lock each traversal step (extra instructions + traversal now 

involves memory writes) 
- Extra storage cost (a lock per node) 
- What is a middle-ground solution that trades off some parallelism for reduced 

overhead? (hint: similar issue to selection of task granularity)
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Practice exercise (on your own time)
▪ Implement a fine-grained locking implementation of a 

binary search tree supporting insert and delete 

struct Tree { 
  Node* root; 
}; 

struct Node { 
   int value; 
   Node* left; 
   Node* right; 
}; 

void insert(Tree* tree, int value); 
void delete(Tree* tree, int value); 
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Lock-free data structures
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Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other 

threads from completing operations on a shared data structure 
indefinitely 

▪ Example: 
- Thread 0 takes a lock on a node in our linked list 
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc. 
- Now, no other threads can complete operations on the data structure (although thread 0 is 

not actively making progress modifying it) 

▪ An algorithm that uses locks is blocking regardless of whether 
the lock implementation uses spinning or pre-emption
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Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is 

guaranteed to make progress (“systemwide progress”) 
- In lock-free case, it is not possible to preempt one of the threads at an 

inopportune time and prevent progress by rest of system 

- Note: this definition does not prevent starvation of any one thread
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Single reader, single writer bounded queue *
struct Queue {  
  int data[N]; 
  int head;   // head of queue 
  int tail;   // next free element 
}; 

void init(Queue* q) { 
   q->head = q->tail = 0; 
}

// return false if queue is full 
bool push(Queue* q, int value) { 

   // queue is full if tail is element before head   
   if (q->tail == MOD_N(q->head - 1)) 
     return false; 

   q->data[q->tail] = value; 
   q->tail = MOD_N(q->tail + 1); 
   return true; 
} 

// returns false if queue is empty 
bool pop(Queue* q, int* value) { 

   // if not empty 
   if (q->head != q->tail) { 
     *value = q->data[q->head]; 
     q->head = MOD_N(q->head + 1);  

   return true; 
  } 
  return false; 
}

▪ Only two threads (one producer, one consumer) accessing queue at the same time 
▪ Threads never synchronize or wait on each other 

- When queue is empty (pop fails), when it is full (push fails)

* Assume a sequentially consistent memory system for now 
   (or the presence of appropriate memory fences, or C++ 11 atomic<>)
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Single reader, single writer unbounded queue *
struct Node { 
  Node* next; 
  int   value; 
}; 

struct Queue {  
  Node* head;  
  Node* tail; 
  Node* reclaim; 
}; 

void init(Queue* q) { 
  q->head = q->tail = q->reclaim = new Node; 
}

void push(Queue* q, int value) { 
   
   Node* n = new Node; 
   n->next = NULL; 
   n->value = value; 

   q->tail->next = n; 
   q->tail = q->tail->next; 

   while (q->reclaim != q->head) { 
    Node* tmp = q->reclaim; 
    q->reclaim = q->reclaim->next; 
    delete tmp; 

   } 
} 

// returns false if queue is empty 
bool pop(Queue* q, int* value) { 

   if (q->head != q->tail) { 
     *value = q->head->next->value; 
     q->head = q->head->next;  

   return true; 
   } 
   return false; 
}

▪ Tail points to last element added (if non-empty) 
▪ Head points to element BEFORE head of queue 
▪ Node allocation and deletion performed by the same thread (producer thread)

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now 
   (or the presence of appropriate memory fences, or C++ 11 atomic<>)
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Single reader, single writer unbounded queue 
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)
tailreclaim

3 10
head

pop (returns 10)
tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim

3 10

reclaim, head

10

push 5 (triggers reclaim)

5
tail
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Lock-free stack (first try)
struct Node { 
  Node* next; 
  int   value; 
}; 

struct Stack {  
  Node* top; 
}; 

void init(Stack* s) { 
  s->top = NULL; 
} 

void push(Stack* s, Node* n) { 
  while (1) { 
    Node* old_top = s->top; 
    n->next = old_top; 
    if (compare_and_swap(&s->top, old_top, n) == old_top) 
      return; 
  } 
} 

Node* pop(Stack* s) { 
  while (1) { 
    Node* old_top = s->top; 
    if (old_top == NULL) 
      return NULL; 
    Node* new_top = old_top->next; 
    if (compare_and_swap(&s->top, old_top, new_top) == old_top) 
      return old_top; 
  } 
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.   

Note difference from fine-grained locking:  In fine-grained locking, the implementation locked a part 
of a data structure.   Here, threads do not hold lock on data structure at all. 
* Assume a sequentially consistent memory system for now 
   (or the presence of appropriate memory fences, or C++ 11 atomic<>)
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The ABA problem
Thread 0 Thread 1

A B C

top

begin pop()  ( local variable: old_top = A, new_top = B)

B C

top

begin pop()  (local variable old_top == A)
complete pop()   (returns A)

modify node A: e.g., set value = 42 
begin push(A) 
complete push(A) 

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!) 
complete pop()  (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

Careful: On this slide A, B, C, and D are addresses 
of nodes, not value stored by the nodes!
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Lock-free stack using counter for ABA soln
struct Node { 
  Node* next; 
  int   value; 
}; 

struct Stack {  
  Node* top; 
  int   pop_count; 
}; 

void init(Stack* s) { 
  s->top = NULL; 
} 

void push(Stack* s, Node* n) { 
  while (1) { 
    Node* old_top = s->top; 
    n->next = old_top; 
    if (compare_and_swap(&s->top, old_top, n) == old_top) 
      return; 
  } 
} 

Node* pop(Stack* s) { 
  while (1) { 
    int pop_count = s->pop_count; 
    Node* top = s->top; 
    if (top == NULL) 
      return NULL; 
    Node* new_top = top->next; 
    if (double_compare_and_swap(&s->top,       top,       new_top, 
                                &s->pop_count, pop_count, pop_count+1)) 
      return top; 
  } 
}

▪ Maintain counter of pop operations 
▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS 
▪ Could also solve ABA problem with careful node allocation and/or element reuse policies

test to see if either have changed (assume 
function returns true if no changes)
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Compare and swap on x86
▪ x86 supports a “double-wide” compare-and-swap instruction 

- Not quite the “double compare-and-swap” used on the previous slide 

- But could simply ensure the stack’s count and top fields are contiguous in 
memory to use the 64-bit wide single compare-and-swap instruction below.  

▪ cmpxchg8b 
- “compare and exchange eight bytes” 

- Can be used for compare-and-swap of two 32-bit values 

▪ cmpxchg16b 
- “compare and exchange 16 bytes” 

- Can be used for compare-and-swap of two 64-bit values
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Another problem: referencing freed memory 
struct Node { 
  Node* next; 
  int   value; 
}; 

struct Stack {  
  Node* top; 
  int   pop_count; 
}; 

void init(Stack* s) { 
  s->top = NULL; 
} 

void push(Stack* s, int value) { 
  Node* n = new Node; 
  n->value = value; 
  while (1) { 
    Node* old_top = s->top; 
    n->next = old_top; 
    if (compare_and_swap(&s->top, old_top, n) == old_top) 
      return; 
  } 
} 

int pop(Stack* s) { 
  while (1) { 
    Stack old; 
    old.pop_count = s->pop_count; 
    old.top = s->top; 

    if (old.top == NULL) 
      return NULL; 
  
    Stack new_stack; 
    new_stack.top = old.top->next; 
    new_stack.pop_count = old.pop_count+1;  
      
    if (doubleword_compare_and_swap(s, old, new_stack)) 
      int value = old.top->value; 
      delete old.top; 
      return value; 
    } 
  } 
}

old top might have been freed at this point 
(by some other thread that popped it)
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Hazard pointer: avoid freeing a node until it’s known 
that all other threads do not hold reference to it

void init(Stack* s) { 
  s->top = NULL; 
} 

void push(Stack* s, int value) { 
  Node* n = new Node; 
  n->value = value; 
  while (1) { 
    Node* old_top = s->top; 
    n->next = old_top; 
    if (compare_and_swap(&s->top, old_top, n) == old_top) 
      return; 
  } 
} 

int pop(Stack* s) { 
  while (1) { 
    Stack old; 
    old.pop_count = s->pop_count; 
    old.top = hazard = s->top; 

    if (old.top == NULL) { 
      return NULL; 
    } 
  
    Stack new_stack; 
    new_stack.top = old.top->next; 
    new_stack.pop_count = old.pop_count+1;  
      
    if (doubleword_compare_and_swap(s, old, new_stack)) { 
      int value = old.top->value; 
      retire(old.top); 
      return value; 
    } 
    hazard = NULL; 
  } 
}

// delete nodes if possible 
void retire(Node* ptr) { 
  push(retireList, ptr); 
  retireListSize++; 

  if (retireListSize > THRESHOLD) 
     for (each node n in retireList) { 
        if (n not pointed to by any 
            thread’s hazard pointer) { 
           remove n from list 
           delete n; 
        } 
     } 
}

struct Node { 
  Node* next; 
  int value; 
}; 

struct Stack {  
  Node* top; 
  int pop_count; 
}; 

// per thread ptr (node that cannot  
// be deleted since the thread is  
// accessing it) 
Node* hazard; 

// list of nodes this thread must 
// delete (this is a per thread list) 
Node* retireList; 
int   retireListSize;



Stanford CS149, Fall 2019

Lock-free linked list insertion *
struct Node { 
   int value; 
   Node* next; 
};

struct List { 
  Node* head; 
};

// insert new node after specified node 
void insert_after(List* list, Node* after, int value) { 

   Node* n = new Node; 
   n->value = value; 

   // assume case of insert into empty list handled 
   // here (keep code on slide simple for class discussion) 

   Node* prev = list->head; 

   while (prev->next) { 
     if (prev == after) { 
       while (1) { 
         Node* old_next = prev->next; 
         n->next = old_next;  
         if (compare_and_swap(&prev->next, old_next, n) == old_next) 
            return; 
       } 
     } 

     prev = prev->next; 
   } 
}

Compared to fine-grained 
locking implementation: 

No overhead of taking locks 
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert. Delete is more complex.
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Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure 

Consider case where B is deleted simultaneously with insertion of E after B. 

B now points to E, but B is not in the list! 

For the curious: 

- Harris 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists” 
- Fomitchev 2004. “Lock-free linked lists and skip lists” 

A B C D

E

X
CAS succeeds 
on A->next

CAS succeeds 
on B->next



Stanford CS149, Fall 2019

Lock-free vs. locks performance comparison

Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy 
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free” 
fg = “fine grained lock”
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In practice: why lock free data-structures?
▪ When optimizing parallel programs in this class you often assume 

that only your program is using the machine 
- Because you care about performance 
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc. 

▪ In these cases, well-written code with locks can sometimes be as fast 
(or faster) than lock-free code  

▪ But there are situations where code with locks can suffer from tricky 
performance problems 
- Situations where a program features many threads (e.g., database, webserver) and page 

faults, pre-emption, etc. can occur while a thread is in a critical section 
- Locks create problems like priority inversion, convoying, crashing in critical section, etc. 

that are often discussed in OS classes
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Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism) 

in operations on shared data structures 
- But fine-granularity can increase code complexity (errors) and increase execution overhead  

▪ Lock-free data structures: non-blocking solution to avoid overheads 
due to locks 
- But can be tricky to implement (and ensuring correctness in a lock-free setting has its own 

overheads) 
- Still requires appropriate memory fences on modern relaxed consistency hardware 

▪ Note: a lock-free design does not eliminate contention 
- Compare-and-swap can fail under heavy contention, requiring spins
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Preview: transactional memory
▪ Q. What was the role of the compare and swap in our lock-free 

implementations? 

▪ A. Determining if another thread had modified the data structure 
while the calling thread was in the middle of an operation. 

▪ Next time… transactional memory 
- A more general mechanism to allow a system to speculate that 

an operation will be successfully completed before another 
thread attempts to modify the structure 

- With mechanisms to “abort” an operation in the event another 
thread does.
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Preview: transactional memory
atomic 

{   // begin transaction 

   perform atomic computation here ... 

}   // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no 
synchronization was necessary. (it speculates!) 

System provides hardware/software support for “rolling back” all loads and 
stores in the critical region if it detects (at run-time) that another thread has 
entered same region at the same time.
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More reading on lock-free structures
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent 

Queue Algorithms 

- Multiple reader/writer lock-free queue 

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists  

▪ Michael Sullivan’s Relaxed Memory Calculus (RMC) compiler 

- https://github.com/msullivan/rmc-compiler  

▪ Many good blog posts and articles on the web: 

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279 

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

