
Parallel Computing
Stanford CS149, Fall 2019

Lecture 11:

Directory-Based Coherence +
Implementing Synchronization

Stanford CS149, Fall 2019

What’s Due

▪ Nov 1
- Assignment 3: A Simple Renderer in CUDA

▪ Nov 4
- Written Assignment 3

▪ Nov 5
- Midterm
- Open book, open notes
- Review session on Nov 3

Stanford CS149, Fall 2019

Today’s topics

▪ A discussion of directory-based cache coherence

▪ Efficiently implementing synchronization primitives
- Primitives for ensuring mutual exclusion

- Locks
- Atomic primitives (e.g., atomic_add)
- Transactions (later in the course)

- Primitives for event signaling
- Barriers

▪ OpenMP
- Parallelizing loops

Stanford CS149, Fall 2019

Review: MSI state transition diagram *

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / BusWB

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / BusWB

BusRd / --

BusWB = Write-back dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2019

Example

Consider this sequence of loads and stores to
addresses X and Y by processors P0 and P1

Assume that X and Y contain value 0 at start
of execution

Hit/Miss Bus P0 state P1 state
P0: LD X
P0: LD X
P0: ST X ← 1
P0: ST X ← 2
P1: ST X ← 3
P1: LD X
P0: LD X
P0: ST X ← 4
P1: LD X
P0: LD Y
P0: ST Y ← 1
P1: ST Y ← 2

Stanford CS149, Fall 2019

Directory-based cache coherence

Stanford CS149, Fall 2019

What you should know
▪ What limits the scalability of snooping-based approaches to cache coherence?

▪ How does a directory-based scheme avoid these problems?

▪ How can the storage overhead of the directory structure be reduced? (and at what
cost?)

Stanford CS149, Fall 2019

Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

The snooping cache coherence protocols
discussed last week relied on broadcasting
coherence information to all processors
over the chip interconnect.

Every time a cache miss occurred, the
triggering cache communicated with all
other caches!

We discussed what information was communicated and what actions were taken to
implement the coherence protocol.

We discussed breifly how to implement broadcasts on an interconnect.
• One example is to use a shared bus for the interconnect
• Efficient broadcast
• Scalability of buses is limited by bus bandwidth

Stanford CS149, Fall 2019

Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall idea of non-uniform access shared memory systems (NUMA): locating regions of memory
near the processors increases scalability: it yields higher aggregate bandwidth and reduced
latency (especially when there is locality in the application)

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled!

Consider this case: processor accesses nearby memory (good...), but to ensure coherence still
must broadcast to all other processors it is doing so (bad...)

Some common terminology:

▪ cc-NUMA = “cache-coherent, non-uniform memory access”

▪ Distributed shared memory system (DSM): cache coherent, shared address space, but
architecture implemented by physically distributed memories

Stanford CS149, Fall 2019

Intel’s ring interconnect

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

System Agent

Graphics

▪ Multiple rings
- request
- snoop
- ack

- data (32 bytes)

▪ Six interconnect nodes: four
“slices” of L3 cache + system
agent + graphics

▪ Each bank of L3 connected to
ring bus twice

Core

Core

Core

Core

Stanford CS149, Fall 2019

Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to determine the state of a line in

the other caches
▪ Alternative idea: avoid broadcast by storing information about the status of the

line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis
(not by broadcast mechanisms)

▪ Still need to maintain invariants
- SWMR

- Write serialization

Stanford CS149, Fall 2019

A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
 .

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

Stanford CS149, Fall 2019

A distributed directory

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the corresponding data for the line

Example: node 0 is the home node of the yellow line, node 1 is the home node of the blue line

▪ “Requesting node”: node containing processor requesting line

Example: directory partition is co-located with memory it describes

Stanford CS149, Fall 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line

▪ Home directory checks entry for line

1. Request: read miss msg

Scalable Interconnect

Stanford CS149, Fall 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line
▪ Home directory checks entry for line
- If dirty bit for cache line is OFF, respond with contents from memory, set presence[0] to true

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg

Scalable Interconnect

Stanford CS149, Fall 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor (with the most up-to-date copy
of the line)

▪ Home node must tell requesting node where to find data
- Responds with message providing identity of line owner (“get it from P2”)

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect

Stanford CS149, Fall 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of line owner
3. Requesting node requests data from owner
4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

Scalable Interconnect

Stanford CS149, Fall 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of line owner
3. Requesting node requests data from owner
4. Owner responds to requesting node, changes state in cache to SHARED (read only)
5. Owner also responds to home node, home clears dirty, updates presence bits, updates memory

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect

Stanford CS149, Fall 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect

Stanford CS149, Fall 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect

Stanford CS149, Fall 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

Scalable Interconnect

Stanford CS149, Fall 2019

Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write

Stanford CS149, Fall 2019

Advantage of directories
▪ On reads, directory tells requesting node exactly where to get the line from

- Either from home node (if the line is clean)
- Or from the owning node (if the line is dirty)
- Either way, retrieving data involves only point-to-point communication

▪ On writes, the advantage of directories depends on the number of sharers
- In the limit, if all caches are sharing data, all caches must be communicated with (just like

broadcast in a snooping protocol)

▪How are invariants maintained?

Stanford CS149, Fall 2019

Cache invalidation patterns
64 processor system

Barnes-Hut

LU Decomposition

Ocean Sim

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

Graphs plot histogram of number
of sharers of a line at the time of
a write

In general only a few processors
share the line (only a few
processors must be told of writes)

Not shown here, but the
expected number of sharers
typically increases slowly with P
(good!)

Stanford CS149, Fall 2019

In general, only a few sharers during a write
▪ Access patterns

- “Mostly-read” objects: lots of sharers, but writes are infrequent, so communicating with
all sharers on a write has minimal impact on performance

- Migratory objects (one processor reads/writes for while, then another, etc.): very few
sharers, so count does not scale with number of processors

- Frequently read/written objects: frequent invalidations, but sharer count is low because
count cannot build up in short time between invalidations (e.g, shared task queue)

- Low-contention locks: infrequent invalidations, so no performance problem

- High-contention locks: tricky because many readers present when lock released

▪ Implication 1: directories are useful for limiting coherence traffic

- Don’t need a broadcast mechanism to “tell everyone”

▪ Implication 2: suggests ways to optimize directory implementations
(reduce storage overhead)

Stanford CS149, Fall 2019

How big is the directory?

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
 .

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

Cache line: 64 bytes / line
P = 256 processors
Memory size: M bytes

How big is the directory?

Stanford CS149, Fall 2019

Full bit vector directory representation
▪ Recall: one presence bit per node
▪ Storage proportional to P xM

- P = number of nodes (e.g., processors)

- M = number of lines in memory

▪ Storage overhead rises with P
- Assume 64 byte cache line size (512 bits)
- 64 nodes (P=64) →12% overhead
- 256 nodes (P=256) → 50% overhead

- 1024 nodes (P=1024) → 200% overhead

. .
 .

P

M

. . .

Stanford CS149, Fall 2019

Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme

- Increase cache line size (reduce M term)
- What are possible problems with this approach?

(consider graphs from last lecture)

- Group multiple processors into a single directory “node” (reduce P term)

- Need only one directory bit per node, not one bit per processor

- Hierarchical: could use snooping protocol to maintain coherence among processors in a node, directory
across nodes

▪ We will now discuss one alternative scheme
- Limited pointer schemes (reduce P)

Stanford CS149, Fall 2019

Limited pointer schemes
Since data is expected to only be in a few caches at once, storage for a limited number of pointers per directory entry
should be sufficient (only need a list of the nodes holding a valid copy of the line!)

Ocean Sim

Example: 1024 processor system

Full bit vector scheme needs 1024 bits per line

Instead, can store ~100 pointers to nodes holding the line (log2(1024)=10 bits per pointer)

In practice, our workload evaluation says we can get by with far less than this

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

Stanford CS149, Fall 2019

Managing overflow in limited pointer schemes

▪ Fallback to broadcast (if broadcast mechanism exists)
- When more than max number of sharers, revert to broadcast

▪ If no broadcast mechanism is present on machine
- Do not allow more than a max number of sharers
- On overflow, newest sharer replaces an existing one

(must invalidate line in the old sharer’s cache)

▪ Coarse vector fallback
- Revert to bit vector representation representation
- Each bit corresponds to K nodes

- On write, invalidate all nodes a bit corresponds to

Stanford CS149, Fall 2019

Optimizing for the common case

Limited pointer schemes are a great example of smartly
understanding and optimizing for the common case:

1. Workload-driven observation: in general the number of cache line sharers is low

2. Make the common case simple and fast: array of pointers for first N sharers

3. Uncommon case is still handled correctly, just with a slower, more complicated
mechanism (the program still works!)

4. Extra expense of the complicated solution is tolerable, since it happens
infrequently

Stanford CS149, Fall 2019

Limited pointer schemes: summary
▪ Limited pointer schemes reduce directory storage

overhead caused by large P
- By adopting a compact representation of a list of

sharers

▪ But do we really even need to maintain a list of
sharers for each cache-line-sized chunk of data in
memory?

. .
 .

P

M

. . .

Directory

Stanford CS149, Fall 2019

Limiting size of directory
▪ Key observation: the majority of memory is NOT resident in cache. And to carry out

coherence protocol the system only needs sharing information for lines that are
currently in cache
- Most directory entries are empty most of the time

- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are empty

Stanford CS149, Fall 2019

Directory coherence in Intel Core i7 CPU
▪ L3 serves as centralized directory

for all lines in the L3 cache

(Since L3 is an inclusive cache, any line in L2 is
guaranteed to also be resident in L3)

▪ Directory maintains list of L2
caches containing line

▪ Instead of broadcasting
coherence traffic to all L2’s, only
send coherence messages to L2’s
that contain the line

(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Stanford CS149, Fall 2019

Coherence in multi-socket Intel systems

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Cache Agent Cache Agent

Memory Controller Memory Controller

Home Agent Home AgentQuickPath
Interconnect

(QPI)

to DRAM…
(with in memory directory)

Dir cache (16KB) Dir cache (16KB)

to DRAM…
(in memory directory)

▪ L3 directory reduces on-chip coherence
traffic (previous slide)

▪ In-memory directory (cached by home
agent/memory controller) reduces
coherence traffic between cores

Stanford CS149, Fall 2019

Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t need broadcast to ensure coherence

because often the number of caches containing a copy of a line is small

▪ Instead of snooping, just store the list of sharers in a “directory” and check the list as necessary

▪ One challenge: reducing overhead of directory storage
- Use hierarchies of processors or larger line sizes
- Limited pointer schemes: exploit fact the most processors not sharing line
- Exploit fact that most lines are not in cache

▪ Implementations can get very complex

Stanford CS149, Fall 2019

Implementing Synchronization

Now that you understand implementations of cache coherence, the
cost of implementing synchronization primitives on a modern

machine will become very apparent.

Stanford CS149, Fall 2019

Three phases of a synchronization event
1. Acquire method

- How a thread attempts to gain access to lock

2. Waiting algorithm
- How a thread waits for access to be granted to lock

3. Release method
- How thread enables other threads to gain lock when its work in the

synchronized region is complete

Stanford CS149, Fall 2019

Busy waiting

▪ Busy waiting (a.k.a. “spinning”)
while (condition X not true) {}

logic that assumes X is true

▪ In classes like CS107/CS110 or in operating systems, you have
certainly also talked about synchronization
- You might have been taught busy-waiting is bad: why?

Stanford CS149, Fall 2019

“Blocking” synchronization
▪ Idea: if progress cannot be made because a lock cannot be

acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)
if (condition X not true)

block until true; // OS scheduler de-schedules thread
// (let’s another thread use the processor)

▪ pthreads mutex example
pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

Stanford CS149, Fall 2019

Busy waiting vs. blocking
▪ Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time

- A processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

▪ Examples:
int lock;

OSSpinLockLock(&lock); // OSX spin lock

pthread_spinlock_t spin;

pthread_spin_lock(&spin);

Stanford CS149, Fall 2019

Implementing Locks

Stanford CS149, Fall 2019

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld R0, mem[addr] // load word into R0
cmp R0, #0 // compare R0 to 0
bnz lock // if nonzero jump to top
st mem[addr], #1

st mem[addr], #0 // store 0 to address

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

Stanford CS149, Fall 2019

Test-and-set based lock

Atomic test-and-set instruction:
ts R0, mem[addr] // load mem[addr] into R0

// if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

Stanford CS149, Fall 2019

Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)

Invalidate line

= thread has lock

Stanford CS149, Fall 2019

Check your understanding

▪ On the previous slide, what is the duration of time the thread
running on P1 holds the lock?

▪ At what points in time does P1’s cache contain a valid copy of
the cache line containing the lock variable?

Stanford CS149, Fall 2019

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

Stanford CS149, Fall 2019

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)
lock cmpxchg dst, src

if (dst == EAX)
ZF = 1
dst = src

else
ZF = 0
EAX = dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

bool compare_and_swap(int* x, int a, int b) {
if (*x == a) {

*x = b;
return true;

}

return false;
}

Self-check: Can you implement assembly for
atomic compare-and-swap using cmpxchg?

Stanford CS149, Fall 2019

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in

succession with as little traffic as possible
▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost
▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling,
low storage cost (one int), no provisions for fairness

Stanford CS149, Fall 2019

Test-and-test-and-set lock
void Lock(int* lock) {

while (1) {

while (*lock != 0);

if (test_and_set(*lock) == 0)
return;

}
}

void Unlock(int* lock) {
*lock = 0;

}

// while another processor has the lock…
// (assume *lock is NOT register allocated)

// when lock is released, try to acquire it

Stanford CS149, Fall 2019

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd
BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

Stanford CS149, Fall 2019

Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)
▪ Still no provisions for fairness

Stanford CS149, Fall 2019

Test-and-set lock with back off

void Lock(volatile int* l) {
int amount = 1;
while (1) {

if (test_and_set(*l) == 0)
return;

delay(amount);
amount *= 2;

}
}

Upon failure to acquire lock, delay for awhile before retrying

▪ Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)
▪ Improves scalability (due to less traffic)
▪ Storage cost unchanged (still one int for lock)
▪ Exponential back-off can cause severe unfairness
- Newer requesters back off for shorter intervals

Stanford CS149, Fall 2019

Ticket lock
Main problem with test-and-set style locks: upon
release, all waiting processors attempt to acquire lock
using test-and-set

struct lock {
int next_ticket;
int now_serving;

};

void Lock(lock* l) {
int my_ticket = atomic_increment(&l->next_ticket); // take a “ticket”
while (my_ticket != l->now_serving); // wait for number

} // to be called

void unlock(lock* l) {
l->now_serving++;

}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

Stanford CS149, Fall 2019

Array-based lock
Each processor spins on a different memory address
Utilizes atomic operation to assign address on attempt to acquire
struct lock {

padded_int status[P]; // padded to keep off same cache line
int head;

};

int my_element;

void Lock(lock* l) {
my_element = atomic_circ_increment(&l->head); // assume circular increment
while (l->status[my_element] == 1);

}

void unlock(lock* l) {
l->status[my_element] = 1;
l->status[circ_next(my_element)] = 0; // next() gives next index

}

O(1) interconnect traffic per release, but lock requires space linear in P
Also, the atomic circular increment is a more complex operation (higher overhead)

Stanford CS149, Fall 2019

Additional atomic operations

Stanford CS149, Fall 2019

Atomic operations provided by CUDA
int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

Stanford CS149, Fall 2019

Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {

int old = *addr;
*addr = (old == compare) ? val : old;
return old;

}

int atomic_min(int* addr, int x) {
int old = *addr;
int new = min(old, x);
while (atomicCAS(addr, old, new) != old) {
old = *addr;
new = min(old, x);

}
}

What about these operations?
int atomic_increment(int* addr, int x); // for signed values of x
void lock(int* addr);

Stanford CS149, Fall 2019

Load-linked, store conditional (LL/SC)
▪ Pair of corresponding instructions (not a single atomic

instruction like compare-and-swap)
- load_linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn’t been written to since
corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX
▪ How might LL/SC be implemented on a cache coherent

processor?

Stanford CS149, Fall 2019

Coming up…
▪ Imagine you have a shared variable for which contention is low.

So it is unlikely that two processors will enter the critical section
at the same time?

▪ You could hope for the best, and avoid the overhead of taking the
lock since it is likely that mechanisms for ensuring mutual
exclusion are not needed for correctness

- Take a “optimize-for-the-common-case” attitude
▪ What happens if you take this approach and you’re wrong: in the

middle of the critical region, another process enters the same
region?

Stanford CS149, Fall 2019

Preview: transactional memory
atomic

{ // begin transaction

perform atomic computation here ...

} // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no
synchronization was necessary. (it speculates!)
System provides hardware/software support for “rolling back” all loads and
stores in the critical region if it detects (at run-time) that another thread has
entered same region at the same time.

Stanford CS149, Fall 2019

Loop Parallelism (LLP)
▪ Overwhelming majority of scientific/engineering applications are expressed in

terms of iterative constructs, that is, loops
- Focus on parallelizing loops

▪ Particular useful approach if starting from an existing program
- Major restructuring is impractical/unnecessary

▪ Goal of exploiting LLP is to evolve the sequential program into a parallel program
- Through transformations that leave the program semantics unchanged

▪ LLP works well for shared address space (e.g. Multicore)

Stanford CS149, Fall 2019

General Approach for Loop Parallelism

Optimize the loop schedule

Parallelize the loops

Eliminate loop-carried dependencies

Find the hotspots

Stanford CS149, Fall 2019

Find the Hotspots

▪ By code inspection ▪ By using performance analysis tools

Stanford CS149, Fall 2019

Parallel Loops
▪ for (i = 0; i < n; i++) {

A[i] = A[i] + B;

}

▪ for (i = 1; i < n; i++) {

A[i] = A[i-1] + C[i-1]; /* S1 */

B[i] = B[i-1] + A[i]; /* S2 */

}

Stanford CS149, Fall 2019

Parallel Loops

▪ for (i = 0; i < n; i++) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

▪ A[0] = A[0] + B[0];

for (i = 0; i < n-1; i++) {

B[i+1] = C[i] + D[i]; /* S2 */

A[i+1] = A[i+1] + B[i+1]; /* S1 */

}

B[n] = C[n-1] + D[n-1];

Stanford CS149, Fall 2019

Data Parallelism with OpenMP

Profs. Olukotun/Zaharia CS 149 Lecture 9 71

For-loop with independent iterations For-loop parallelized using
an OpenMP pragma

gcc source.c -fopenmp

Stanford CS149, Fall 2019

Privatizing Variables

▪ Critical to performance!
▪ OpenMP pragmas:

- Designed to make parallelizing sequential code easier
- Makes copies of “private” variables automatically

- And performs some automatic initialization, too

- Must specify shared/private per-variable in parallel region
- private: Uninitialized private data

- Private variables are undefined on entry and exit of the parallel region
- shared: All-shared data
- threadprivate: “static” private for use across several parallel regions

Stanford CS149, Fall 2019

Firstprivate/Lastprivate Clauses

▪ firstprivate (list)

- All variables in the list are initialized with the value the original object had before
entering the parallel region

▪ lastprivate(list)

- The thread that executes the last iteration or section in sequential order updates
the value of the objects in the list

73

Stanford CS149, Fall 2019

Example Private Variables

Profs. Olukotun/Zaharia CS 149 Lecture 9 74

Stanford CS149, Fall 2019

for directive Example

75

Stanford CS149, Fall 2019

Nested Loop Parallelism
#pragma omp parallel for

for(int y=0; y<25; ++y)

{

#pragma omp parallel for

for(int x=0; x<80; ++x)

tick(x,y);

}

#pragma omp parallel for collapse(2) //OpenMP 3.0 (gcc 4.4)

for(int y=0; y<25; ++y)

for(int x=0; x<80; ++x)

tick(x,y);

Stanford CS149, Fall 2019

Multiple Part Parallel Regions
▪ You can also have a “multi-part” parallel region

- Allows easy alternation of serial & parallel parts
- Doesn’t require re-specifying # of threads, etc.

#pragma omp parallel . . .
{
#pragma omp for
. . . Loop here . . .
#pragma omp single
. . . Serial portion here . . .
#pragma omp sections
. . . Sections here . . .
}

Stanford CS149, Fall 2019

OMP Directives Overheads

78

Parallel for

parallel

for

Stanford CS149, Fall 2019

“if” Clause

Profs. Olukotun/Zaharia CS 149 Lecture 9 79

▪ if (scalar expression)
- Only execute in parallel if

expression evaluates to true
- Otherwise, execute serially

Performance without if clause

Stanford CS149, Fall 2019

Reductions in OpenMP

▪ May add reduction clause to parallel for pragma
▪ Specify reduction operation and reduction variable
▪ OpenMP takes care of storing partial results in private variables and combining partial results after

the loop
▪ The reduction clause has this syntax:

reduction (<op> :<variable>)

▪ Operators
- + Sum
- * Product
- &, |, ^ Bitwise and, or , exclusive or
- &&, || Logical and, or

Profs. Olukotun/Zaharia CS 149 Lecture 9 80

Stanford CS149, Fall 2019

Example: Numerical Integration

▪ We know mathematically
that

▪ We can approximate the
integral as a sum of
rectangles:

Stanford CS149, Fall 2019

Sequential Pi Computation

static long num_steps = 100000;
double step;

void main () {
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Stanford CS149, Fall 2019

Loop Parallelized Pi Computation

▪ Notice that we haven’t changed any lines of code, only added 4 lines

▪ Compare to MPI

#include <omp.h>
static long num_steps = 1000000; double step;
#define NUM_THREADS 8

void main (){
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

83

Stanford CS149, Fall 2019

Dynamic Tasking with OpenMP

▪ OpenMP is a mixed bag
-schedule(dynamic, size) is a dynamic

equivalent to the static directive
- Master passes off values of iterations to

the workers of size size
- Automatically handles dynamic tasking of

simple loops

- Otherwise must make your own
- Includes many commonly used cases,

unlike static
- Just like pthreads, except must be lock-

Stanford CS149, Fall 2019

OpenMP Guided Scheduling

Thread `chunk’

of

 it
er

at
io

ns
• schedule(guided, size)

• Guided scheduling is a compromise to
reduce scheduling overhead

• Iteration space is divided up into
exponentially decreasing chunks

• Final size is usually 1, unless set by
the programmer

• Chunks of work are dynamically
obtained

• Works quite well provided work per
iteration is constant – if unknown

dynamic is better

Stanford CS149, Fall 2019

OpenMP Scheduling

CS315A Lecture 3

Stanford CS149, Fall 2019

Tasking in OpenMP 3.0
▪ Tasking allows parallelization of units of work that are dynamically generated

▪ Provides flexible model for irregular parallelism

▪ #pragma omp task [clause [[,]clause] ...]

structured-block

▪ Task Synchronization
- C/C++: #pragma omp taskwait

- Current task suspends execution until all children tasks, generated within the current task up to this point, are complete

Stanford CS149, Fall 2019

Fibonacci Example
▪ Default for local variables is firstprivate

int fib (int n)
{

int x,y;
if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib(n-2);

#pragma omp taskwait
return x+y;;

}

Profs. Aiken/Olukotun CS 149 Lecture 13 88

Stanford CS149, Fall 2019

OpenMP Summary

▪ OpenMP provides a simple programming model
- Loops or sections
- Incremental parallelism

▪ Targeted at shared memory systems
- Won’t scale easily to large machines
- Easy to create false sharing

▪ Compilers with OpenMP 2.5 support are widely available

▪ OpenMP 3.0 supports tasking
- Supports irregular parallelism

Profs. Aiken/Olukotun CS 149 Lecture 13 89

Stanford CS149, Fall 2019

Implementing Barriers

Stanford CS149, Fall 2019

Implementing a centralized barrier
(Barrier for P processors, based on shared counter)

Does it work? Consider:
do stuff ...
Barrier(b, P);
do more stuff ...
Barrier(b, P);

struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag;

};

// parameter p gives number of processors that should hit the barrier
void Barrier(Barrier_t* b, int p) {
lock(b->lock);
if (b->counter == 0) {
b->flag = 0; // first thread arriving at barrier clears flag

}
int num_arrived = ++(b->counter);
unlock(b->lock);

if (num_arrived == p) { // last arriver sets flag
b->counter = 0;
b->flag = 1;

}
else {
while (b->flag == 0); // wait for flag

}
}

Stanford CS149, Fall 2019

Correct centralized barrier
struct Barrier_t {

LOCK lock;
int arrive_counter; // initialize to 0 (number of threads that have arrived)
int leave_counter; // initialize to P (number of threads that have left barrier)
int flag;

};

void Barrier(Barrier_t* b, int p) {
lock(b->lock);
if (b->arrive_counter == 0) { // if first to arrive...

if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
b->flag = 0; // first arriving thread clears flag

} else {
unlock(lock);
while (b->leave_counter != P); // wait for all threads to leave before clearing
lock(lock);
b->flag = 0; // first arriving thread clears flag

}
}
int num_arrived = ++(b->arrive_counter);
unlock(b->lock);

if (num_arrived == p) { // last arriver sets flag
b->arrive_counter = 0;
b->leave_counter = 1;
b->flag = 1;

}
else {

while (b->flag == 0); // wait for flag
lock(b->lock);
b->leave_counter++;
unlock(b->lock);

}

Main idea: wait for all processes to
leave first barrier, before clearing
flag for entry into the second

Stanford CS149, Fall 2019

Centralized barrier with sense reversal
struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag; // initialize to 0

};

int private_sense = 0; // private per processor. Main idea: processors wait
// for flag to be equal to private_sense

void Barrier(Barrier_t* b, int p) {
private_sense = (private_sense == 0) ? 1 : 0;
lock(b->lock);
int num_arrived = ++(b->counter);
if (b->counter == p) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = private_sense;

}
else {
unlock(b->lock);
while (b.flag != private_sense); // wait for flag

}

Sense reversal optimization results in one spin instead of two

Stanford CS149, Fall 2019

Centralized barrier: traffic
▪ O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter

(O(P) traffic assuming lock acquisition is implemented in O(1) manner)
- Last thread: 2 write transactions to write to the flag and reset the counter

(O(P) traffic since there are many sharers of the flag)

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock
- So span (latency) of entire operation is O(P)

- Can we do better?

Stanford CS149, Fall 2019

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in more complex interconnect topologies

- lg(P) span (latency)
▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter

- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized Barrier Combining Tree Barrier

High contention!
(e.g., single barrier

lock and counter)

