Lecture 7:

GPU Architecture & CUDA Programming

Parallel Computing
Stanford CS149, Fall 2019
Tunes

Poliça
“Smug”

“Why have one drummer when your band can have two? Why write code for a chip that can’t run thousands of threads at once?”
- Channy Leaneagh
Today

- History: how graphics processors, originally designed to accelerate 3D games, evolved into highly parallel compute engines for a broad class of applications like:
 - deep learning
 - computer vision
 - scientific computing

- Programming GPUs using the CUDA language

- A more detailed look at GPU architecture
Recall basic GPU architecture

GPU
Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

Memory
DDR5 DRAM
(a few GB)

~150-300 GB/sec
(high end GPUs)
Graphics 101 + GPU history
(for fun)
What GPUs were originally designed to do: 3D rendering

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D mesh contributes to appearance of each pixel in the image?
What GPUs are still designed to do

Real-time (30 fps) on a high-end GPU

Unreal Engine Kite Demo (Epic Games 2015)
Render high complexity 3D scenes, in real-time

Far Cry 5
The 3D graphics workload
Tip: how to explain “a system”

- Step 1: describe the **things** (key entities) that are manipulated
 - The nouns
Real-time graphics primitives (entities)

Represent surface as a 3D triangle mesh
Real-time graphics primitives (entities)

Vertices (points in space)

Primitives (e.g., triangles, points, lines)

Fragments

Pixels (in an image)
How to explain “a system”

- **Step 1:** describe the **things** (key entities) that are manipulated
 - The nouns

- **Step 2:** describe the operations the system performs on these entities
 - The verbs
Rendering a picture

Input: a list of vertices in 3D space (and their connectivity into primitives)

Example: every three vertices defines a triangle

list_of_positions = {
 v0x, v0y, v0z,
 v1x, v1y, v1x,
 v2x, v2y, v2z,
 v3x, v3y, v3x
};

triangle 0 = {v0, v1, v2}
triangle 1 = {v1, v2, v3}
Rendering a picture

Step 1: given a scene camera position/orientation in 3D, compute where the vertices lie on screen
Rendering a picture

Step 2: group vertices into primitives

Input vertex buffer

Vertex Generation

3D vertex stream

Vertex Processing

Projected vertex stream

Primitive Generation

Primitive stream
(triangles with projected vertices)
Rendering a picture

Step 3: generate one fragment for each pixel a primitive overlaps
Rendering a picture

Step 4: compute color of primitive for each fragment (based on a description of surface materials and scene lighting)
Rendering a picture

Step 5: put color of the “closest fragment” to the camera in the output image
Real-time graphics pipeline

Abstracts process of rendering a picture as a sequence of operations on vertices, primitives, fragments, and pixels.
Fragment processing computations simulate reflection of light off of real-world materials.

Example materials:

Images from Matusik et al. SIGGRAPH 2003
Great diversity of materials and lights in the world!
Graphics shading languages

- Allow application to extend the functionality of the graphics pipeline by providing code to define behavior of materials and lights
 - Support diversity in materials
 - Support diversity in lighting conditions

- Programmer provides mini-programs (“shaders”) that define pipeline logic for certain stages
 - Pipeline maps shader function onto all elements of input stream
Example fragment shader program *

Run once per fragment (per pixel covered by a triangle)

OpenGL shading language (GLSL) shader program: defines behavior of fragment processing stage

uniform sampler2D myTexture;
uniform float3 lightDir;
varying vec3 norm;
varying vec2 uv;

void myFragmentShader()
{
 vec3 kd = texture2D(myTexture, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return vec4(kd, 1.0);
}

myTexture is a texture map

Syntax/details of this code not important to CS149
What is important is that a fragment shader is a pure function invoked on a stream of inputs.
Shaded result

Image contains output of myFragmentShader for each pixel covered by surface (pixels covered by multiple surfaces contain output from surface closest to camera)
Why do GPUs have many high-throughput cores?

Many SIMD, multi-threaded cores provide efficient execution of vertex and fragment kernels.
Observation circa 2001-2003

GPUs are **very fast** processors for performing the same computation (shader programs) in parallel on large collections of data (streams of vertices, fragments, and pixels).

Wait a minute! That sounds a lot like data-parallelism to me! I remember data-parallelism from exotic supercomputers in the 90s.

And every year GPUs are getting faster because more transistors = more parallelism.
Hack! early GPU-based scientific computation

Say you want to run a function on all elements of a 512x512 array
Set output image size to be array size (512 x 512)
Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

We now can use the GPU like a data-parallel programming system.

Fragment shader function is mapped over 512 x 512 element collection.

Hack!
“GPGPU” 2002-2003

GPGPU = “general purpose” computation on GPUs

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]
Brook stream programming language (2004)

- **Stanford graphics lab research project** [Buck 2004]
- **Abstract GPU hardware as data-parallel processor**

```c
kernel void scale(float amount, float a<>, out float b<>)
{
    b = amount * a;
}
float scale_amount;
float input_stream<1000>;  // stream declaration
float output_stream<1000>;  // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);
```

- Brook compiler translated generic stream program into graphics commands (such as drawTriangles) and a set of graphics shader programs that could be run on GPUs of the day.
GPU compute mode
Review: how to run code on a CPU

Lets say a user wants to run a program on a multi-core CPU...

- OS loads program text into memory
- OS selects CPU execution context
- OS interrupts processor, prepares execution context (sets contents of registers, program counter, etc. to prepare execution context)
- Go!
- Processor begins executing instructions from within the environment maintained in the execution context.

Multi-core CPU
How to run code on a GPU (prior to 2007)

Let’s say a user wants to draw a picture using a GPU...

- Application (via graphics driver) provides GPU vertex and fragment shader program binaries
- Application sets graphics pipeline parameters (e.g., output image size)
- Application provides GPU a buffer of vertices
- Application sends GPU a “draw” command:
 `drawPrimitives(vertex_buffer)`

This was the only interface to GPU hardware.
GPU hardware **could only** execute graphics pipeline computations.
NVIDIA Tesla architecture (2007)
(GeForce 8xxx series GPUs)
First alternative, non-graphics-specific ("compute mode") interface to GPU hardware

Let’s say a user wants to run a non-graphics program on the GPU’s programmable cores...

- Application can allocate buffers in GPU memory and copy data to/from buffers
- Application (via graphics driver) provides GPU a single kernel program binary
- Application tells GPU to run the kernel in an SPMD fashion ("run N instances")
 \[\text{launch}(\text{myKernel}, N) \]

Aside: interestingly, this is a far simpler operation than the graphics operation \[\text{drawPrimitives}() \]
CUDA programming language

- Introduced in 2007 with NVIDIA Tesla architecture

- “C-like” language to express programs that run on GPUs using the compute-mode hardware interface

- Relatively low-level: CUDA’s abstractions closely match the capabilities/performance characteristics of modern GPUs (design goal: maintain low abstraction distance)

- Note: OpenCL is an open standards version of CUDA
 - CUDA only runs on NVIDIA GPUs
 - OpenCL runs on CPUs and GPUs from many vendors
 - Almost everything I say about CUDA also holds for OpenCL
 - CUDA is better documented, thus I find it preferable to teach with
The plan

1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?
Clarification (here we go again...)

- I am going to describe CUDA abstractions using CUDA terminology

- Specifically, be careful with the use of the term CUDA thread. A CUDA thread presents a similar abstraction as a pthread in that both correspond to logical threads of control, but the implementation of a CUDA thread is very different

- We will discuss these differences at the end of the lecture
CUDA programs consist of a hierarchy of concurrent threads

Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                  Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

Regular application thread running on CPU (the “host”)
Basic CUDA syntax

“Host” code: serial execution
Running as part of normal C/C++ application on CPU

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

SPMD execution of device kernel function:

“CUDA device” code: kernel function (__global__ denotes a CUDA kernel function) runs on GPU

Each thread computes its overall grid thread id from its position in its block (_threadIdx_) and its block’s position in the grid (_blockIdx_)

CUDA kernel definition

```
__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    C[j][i] = A[j][i] + B[j][i];
}
```

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
    Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Clear separation of host and device code

Separation of execution into host and device code is performed statically by the programmer.

```
const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
{
    return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                  float B[Ny][Nx],
                                  float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```
Number of SPMD threads is explicit in program

Number of kernel invocations is not determined by size of data collection
(a kernel launch is not specified by map(kernel, collection) as was the case with graphics shader programming)

Regular application thread running on CPU (the “host”)

```cpp
const int Nx = 11;  // not a multiple of threadsPerBlock.x
const int Ny = 5;   // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
                (Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

CUDA kernel definition

```cpp
__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;

    // guard against out of bounds array access
    if (i < Nx && j < Ny)
        C[j][i] = A[j][i] + B[j][i];
}
```
CUDA execution model

Host
(serial execution)
Implementation: CPU

CUDA device
(SPMD execution)
Implementation: GPU
CUDA memory model
Distinct host and device address spaces

Host (serial execution)
Host memory address space

CUDA device (SPMD execution)
Device “global” memory address space

Implementation: CPU
Implementation: GPU
memcpy primitive
Move data between address spaces

float* A = new float[N]; // allocate buffer in host mem
// populate host address space pointer A
for (int i=0; i<N; i++)
 A[i] = (float)i;

int bytes = sizeof(float) * N;
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space
// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: directly accessing deviceA[i] is an invalid
// operation here (cannot manipulate contents of deviceA
// directly from host only from device code, since deviceA
// is not a pointer into the host’s address space)
CUDA device memory model

Three distinct types of address spaces visible to kernels

Per-block shared memory
Readable/writable by all threads in block

Per-thread private memory
Readable/writable by thread

Device global memory
Readable/writable by all threads

Different address spaces reflect different regions of locality in the program

As we will soon see, this has important implications to efficiency of GPU implementations of CUDA:

e.g., how might you schedule threads if you know a priori that certain threads access the same variables?
CUDA example: 1D convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;
1D convolution in CUDA (version 1)
One thread per output element

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;  // thread local variable
  float result = 0.0f;  // thread-local variable
  for (int i=0; i<3; i++)
    result += input[index + i];
  output[index] = result / 3.f;
}
```

Host code
```
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) );  // allocate input array in device memory
cudaMalloc(&devOutput, sizeof(float) * N);      // allocate output array in device memory
// properly initialize contents of devInput here ...
 convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
1D convolution in CUDA (version 2)
One thread per output element: stage input data in per-block shared memory

CUDA Kernel

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

    __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
    int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable
    support[threadIdx.x] = input[index];
    if (threadIdx.x < 2) {
        support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
    }

    __syncthreads();

    float result = 0.0f; // thread-local variable
    for (int i=0; i<3; i++)
        result += support[threadIdx.x + i];

    output[index] = result / 3.f;
}
```

Host code

```c
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) ); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
CUDA synchronization constructs

- __syncthreads()
 - Barrier: wait for all threads in the block to arrive at this point

- Atomic operations
 - e.g., float atomicAdd(float* addr, float amount)
 - CUDA provides atomic operations on both global memory addresses and per-block shared memory addresses

- Host/device synchronization
 - Implicit barrier across all threads at return of kernel
Summary: CUDA abstractions

- **Execution: thread hierarchy**
 - Bulk launch of many threads (this is imprecise... I’ll clarify later)
 - Two-level hierarchy: threads are grouped into thread blocks

- **Distributed address space**
 - Built-in memcpy primitives to copy between host and device address spaces
 - Three different types of device address spaces
 - Per thread, per block (“shared”), or per program (“global”)

- **Barrier synchronization primitive for threads in thread block**

- **Atomic primitives for additional synchronization (shared and global variables)**
CUDA semantics

```c
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
    __shared__ float support[THREADS_PER_BLK+2];  // per-block allocation
    int index = blockIdx.x * blockDim.x + threadIdx.x;  // thread local var
    support[threadIdx.x] = input[index];
    if (threadIdx.x < 2) {
        support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
    }
    __syncthreads();
    float result = 0.0f;  // thread-local variable
    for (int i=0; i<3; i++)
        result += support[threadIdx.x + i];
    output[index] = result / 3.f;
}
```

Consider implementation of call to `pthread_create()`:

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can schedule thread

Will running this CUDA program create 1 million instances of local variables/per-thread stack?

8K instances of shared variables? (`support`)

launch over 1 million CUDA threads (over 8K thread blocks)
Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Desirable for CUDA program to run on all of these GPUs without modification

Note: there is no concept of num_cores in the CUDA programs I have shown you. (CUDA thread launch is similar in spirit to a forall loop in data parallel model examples)
CUDA compilation

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
    __shared__ float support[THREADS_PER_BLK+2]; // per block allocation
    int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var
    support[threadIdx.x] = input[index];
    if (threadIdx.x < 2) {
        support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
    }
    __syncthreads();

    float result = 0.0f; // thread-local variable
    for (int i=0; i<3; i++)
        result += support[threadIdx.x + i];

    output[index] = result;
}
```

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- B bytes of local data per thread
- 130 floats (520 bytes) of shared space per thread block

```c
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```

launch 8K thread blocks
The diagram illustrates the CUDA thread-block assignment process. A grid of 8K `convolve` thread blocks is specified by the kernel launch command `launch(blockDim, convolve)`. The block resource requirements are contained in the compiled kernel binary and include 128 threads and 520 bytes of shared memory. The major CUDA assumption is that thread block execution can be carried out in any order (no dependencies between blocks). GPU implementation maps thread blocks ("work") to cores using a dynamic scheduling policy that respects resource requirements. Shared memory is fast on-chip memory.
Another instance of our common design pattern: a pool of worker “threads”

Other examples:
- ISPC’s implementation of launching tasks
 - Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program
- Thread pool in a web server
 - Number of threads is a function of number of cores, not number of outstanding requests
 - Threads spawned at web server launch, wait for work to arrive
This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

<table>
<thead>
<tr>
<th>Warp 0</th>
<th>Warp 1</th>
<th>...</th>
<th>Registers for warp execution contexts: max 64 (256 KB)</th>
<th>...</th>
<th>Warp 62</th>
<th>Warp 63</th>
</tr>
</thead>
</table>

“Shared” memory storage (96 KB)

L1 cache (48 KB)

SM resource limits:
- Max warp execution contexts: 64 (2,048 total CUDA threads)
- 96 KB of shared memory

= SIMD functional unit, control shared across 32 units (1 MUL-ADD per clock)

= load/store

= SIMD special function unit (sin, cos, etc.)
Recall, CUDA kernels execute as SPMD programs.

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.

A `convolve` thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block) (Warps are an important GPU implementation detail, but not a CUDA abstraction!)

SM core operation each clock:
- Select up to four runnable warps from 64 resident on SM core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism) *
Review: what is a “warp”?

- A warp is a CUDA implementation detail on NVIDIA GPUs
- On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are executed simultaneously using 32-wide SIMD execution.

In this fictitious NVIDIA GPU example:
Core maintains contexts for 12 warps
Selects one warp to run each clock
Review: what is a “warp”?

- A warp is a CUDA implementation detail on NVIDIA GPUs.

- On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are executed simultaneously using 32-wide SIMD execution.
 - These 32 logical CUDA threads share an instruction stream and therefore performance can suffer due to divergent execution.
 - This mapping is similar to how ISPC runs program instances in a gang.

- The group of 32 threads sharing an instruction stream is called a warp.
 - In a thread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)
 - Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.
 - Each “SM” core in the GTX 1080 is capable of scheduling and interleaving execution of up to 64 warps.
 - So a “SM” core is capable of concurrently executing multiple CUDA thread blocks.
NVIDIA GTX 1080 (20 SMs)

L2 Cache (2 MB)

320 GB/sec (256 bit interface)

GPU memory
DD5 DRAM
Summary: geometry of the GTX 1080

- 1.6 GHz clock
- 20 SM cores per chip
- $20 \times 128 = 2,560$ SIMD mul-add ALUs
 $= 8.1$ TFLOPs
- Up to $20 \times 64 = 1280$ interleaved warps per chip (40,960 CUDA threads/chip)
- TDP: 180 watts

L2 Cache (2 MB)

GPU memory (DDR5 DRAM)

320 GB/sec
Running a CUDA program on a GPU
Running the convolve kernel

convolve kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block requires $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Let’s assume array size N is very large, so the host-side kernel launch generates thousands of thread blocks.

```c
#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);
```

Let’s run this program on the fictitious two-core GPU below.
(Note: my fictitious cores are much “smaller” than the GTX 1080 SM cores discussed earlier in lecture: they have fewer execution units, support for fewer active warps, less shared memory, etc.)
Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

```
EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
```
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof}(\text{float}) = 520$ bytes of shared memory

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and 520 bytes of shared storage)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 1
TOTAL = 1000

GPU Work Scheduler

Core 0
- Fetch/Decode
- Block 0 (contexts 0-127)
 - Execution context storage for 384 CUDA threads
 - Block 0: support (520 bytes)
 - “Shared” memory storage (1.5 KB)

Core 1
- Fetch/Decode
- Execution context storage for 384 CUDA threads
- “Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate \(130 \times \text{sizeof(float)} = 520 \) bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 2
TOTAL = 1000

GPU Work Scheduler

Core 0
- Block 0 (contexts 0-127)
 - Execution context storage for 384 CUDA threads
 - "Shared" memory storage (1.5 KB)
 - Block 0: support (520 bytes @ 0x0)

Core 1
- Block 1 (contexts 0-127)
 - Execution context storage for 384 CUDA threads
 - "Shared" memory storage (1.5 KB)
 - Block 1: support (520 bytes @ 0x0)
Running the CUDA kernel

Kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 3
TOTAL = 1000

GPU Work Scheduler

Core 0
- Block 0 (contexts 0-127)
- Block 2 (contexts 128-255)
 - Execution context storage for 384 CUDA threads
 - “Shared” memory storage (1.5 KB)

Core 1
- Block 1 (contexts 0-127)
- Block 2 (contexts 128-255)
 - Execution context storage for 384 CUDA threads
 - “Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate \(130 \times \text{sizeof(float)} = 520\) bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown). Only two thread blocks fit on a core (third block won’t fit due to insufficient shared storage \(3 \times 520\) bytes > 1.5 KB)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4
TOTAL = 1000

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate \(130 \times \text{sizeof(float)} = 520\) bytes of shared memory

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4
TOTAL = 1000
Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 4: thread block 0 completes on core 0

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
NEXT = 4
TOTAL = 1000

GPU Work Scheduler

Core 0

Block 2 (contexts 128-255):
Execution context storage for 384 CUDA threads
“Shared” memory storage (1.5 KB)

Block 2: support (520 bytes @ 0x520)

Core 1

Block 3 (contexts 128-255):
Execution context storage for 384 CUDA threads
“Shared” memory storage (1.5 KB)

Block 3: support (520 bytes @ 0x520)

Block 1 (contexts 0-127):
Block 1: support (520 bytes @ 0x0)
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 5
TOTAL = 1000

GPU Work Scheduler

Core 0
- Block 4 (contexts 0-127)
 - Execution context storage for 384 CUDA threads
 - Block 4: support (520 bytes @ 0x0)
 - "Shared" memory storage (1.5 KB)

Core 1
- Block 1 (contexts 0-127)
 - Block 1: support (520 bytes @ 0x0)
- Block 3 (contexts 128-255)
 - Block 3: support (520 bytes @ 0x520)
 - Execution context storage for 384 CUDA threads
 - "Shared" memory storage (1.5 KB)
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 6: thread block 2 completes on core 0

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 5
TOTAL = 1000

Core 0
- Block 4 (contexts 0-127)
- Execution context storage for 384 CUDA threads
- "Shared" memory storage (1.5 KB)

Core 1
- Block 1 (contexts 0-127)
- Execution context storage for 384 CUDA threads
- "Shared" memory storage (1.5 KB)
- Block 3 (contexts 128-255)
- Block 3: support (520 bytes @ 0x520)
Running the CUDA kernel

Kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 6
TOTAL = 1000

Core 0

- Block 4 (contexts 0-127)
 - Block 4: support (520 bytes @ 0x0)
- Block 5 (contexts 128-255)
 - Block 5: support (520 bytes 0x520)

Shared memory storage (1.5 KB)

Core 1

- Block 1 (contexts 0-127)
 - Block 1: support (520 bytes @ 0x0)
- Block 3 (contexts 128-255)
 - Block 3: support (520 bytes @ 0x520)

Shared memory storage (1.5 KB)
More advanced scheduling questions:

(If you understand the following examples you really understand how CUDA programs run on a GPU, and also have a good handle on the work scheduling issues we’ve discussed in the course up to this point.)
Why must CUDA allocate execution contexts for all threads in a block?

Imagine a thread block with **256 CUDA threads** (see code, top-right)

Assume a fictitious SM core with only 4 warps worth of parallel execution in HW (illustrated above)

Why not just run four warps (threads 0-127) to completion then run next four warps (threads 128-255) to completion in order to execute the entire thread block?

CUDA kernels may create dependencies between threads in a block

Simplest example is __syncthreads()?

Threads in a block cannot be executed by the system in any order when dependencies exist.

CUDA semantics: threads in a block **ARE** running concurrently. If a thread in a block is runnable it will eventually be run! (no deadlock)
Implementation of CUDA abstractions

- **Thread blocks can be scheduled in any order by the system**
 - System assumes no dependencies between blocks
 - Logically concurrent
 - A lot like ISPC tasks, right?

- **CUDA threads in same block DO run at the same time**
 - When block begins executing, all threads are running
 (these semantics impose a scheduling constraint on the system)
 - A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
 - Threads in thread block are concurrent, cooperating “workers”

- **CUDA implementation:**
 - A NVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances (but unlike an ISPC gang, the warp concept does not exist in the programming model*)
 - All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency communication through shared memory variables
 - When all threads in block complete, block resources (shared memory allocations, warp execution contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote
Consider a program that creates a histogram:

- This example: build a histogram of values in an array
 - All CUDA threads **atomically** update shared variables in global memory

- Notice I have never claimed CUDA thread blocks were guaranteed to be independent. I only stated CUDA reserves the right to schedule them in any order.

- **This is valid code! This use of atomics does not impact implementation’s ability to schedule blocks in any order (atomics used for mutual exclusion, and nothing more)**

```c
int counts[10]

int A[N]
```

```c
atomicAdd(&counts[A[i]], 1);
```

```
int* A = {0, 3, 4, 1, 9, 2, 8, 4, 1}; // array of integers between 0-9
```
But is this reasonable CUDA code?

- Consider implementation of on a single core GPU with resources for one CUDA thread block per core

 - What happens if the CUDA implementation runs block 0 first?
 - What happens if the CUDA implementation runs block 1 first?

```
// do stuff here
atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0) {
    // do stuff here
}
```

Thread block 0

Thread block 1

Global memory

```
int myFlag
```

(assume myFlag is initialized to 0)
“Persistent thread” CUDA programming style

Idea: write CUDA code that requires knowledge of the number of cores and blocks per core that are supported by underlying GPU implementation.

Programmer launches exactly as many thread blocks as will fill the GPU

(Program makes assumptions about GPU implementation: that GPU will in fact run all blocks concurrently. Ugg!)

Now, work assignment to blocks is implemented entirely by the application (circumvents GPU’s thread block scheduler)

Now the programmer’s mental model is that *all* CUDA threads are concurrently running on the GPU at once.
CUDA summary

- **Execution semantics**
 - Partitioning of problem into thread blocks is in the spirit of the data-parallel model (intended to be machine independent: system schedules blocks onto any number of cores)
 - Threads in a thread block actually do run concurrently (they have to, since they cooperate)
 - Inside a single thread block: SPMD shared address space programming
 - There are subtle, but notable differences between these models of execution. Make sure you understand it. (And ask yourself what semantics are being used whenever you encounter a parallel programming system)

- **Memory semantics**
 - Distributed address space: host/device memories
 - Thread local/block shared/global variables within device memory
 - Loads/stores move data between them (so it is correct to think about local/shared/global memory as being distinct address spaces)

- **Key implementation details:**
 - Threads in a thread block are scheduled onto same GPU core to allow fast communication through shared memory
 - Threads in a thread block are grouped into warps for SIMD execution on GPU hardware
One last point...

- In this lecture, we talked about writing CUDA programs for the programmable cores in a GPU
 - Work (described by a CUDA kernel launch) was mapped onto the cores via a hardware work scheduler

- Remember, there is still the graphics pipeline interface for driving GPU execution
 - And much of the interesting non-programmable functionality of the GPU is present to accelerate execution of graphics pipeline operations
 - It’s more or less “turned off” when running CUDA programs

- How the GPU implements the graphics pipeline efficiently is a topic for a graphics class... *

* See CS248 or CS348K