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Tunes

Valerie June 
“Wanna be on your mind”

“I saw students constantly conflating abstraction with 
implementation, and so we wrote this song to encourage them to 

always be thinking about difference. 
- Valerie June
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Today’s theme is a critical idea in this course. 
And today’s theme is: 

Abstraction vs. implementation 

Conflating abstraction with implementation is a common 
cause for confusion in this course.
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An example: 
Programming with ISPC
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ISPC

▪ Intel SPMD Program Compiler (ISPC) 

▪ SPMD: single program multiple data  

▪ http://ispc.github.com/
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Recall: example program from last class

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N floating-point numbers
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sin(x) in ISPC

export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

Compute sin(x) using Taylor expansion:  sin(x) = x - x3/3! + x5/5! - x7/7! + ...

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC 
“program instances” 

All instances run ISPC code concurrently 

Upon return, all instances have completed
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sin(x) in ISPC

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp 

Call to sinx() 
Begin executing programCount 
instances of sinx()   (ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

sinx() returns. 
Completion of ISPC program instances. 
Resume sequential execution

1  2  3  4  5  6  7  8  

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 

All instances run ISPC code concurrently 

Upon return, all instances have completed

Compute sin(x) using Taylor expansion:  sin(x) = x - x3/3! + x5/5! - x7/7! + ...

In this illustration programCount = 8
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export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

ISPC Keywords: 
programCount: number of simultaneously 
executing instances in the gang (uniform value) 

programIndex: id of the current instance in the 
gang. (a non-uniform value: “varying”) 

uniform: A type modifier. All instances have the 
same value for this variable.  Its use is purely an 
optimization. Not needed for correctness.

sin(x) in ISPC
“Interleaved” assignment of array elements to program instances
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Interleaved assignment of program instances 
to loop iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Gang” of ISPC program instances
In this illustration: gang contains four instances: programCount = 4 

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Elements of output array (results)
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ISPC implements the gang abstraction using 
SIMD instructions 
#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp 

ISPC compiler generates SIMD implementation: 
Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width) 
ISPC compiler generates binary (.o) with SIMD instructions  
C++ code links against object file as usual

Call to sinx() 
Begin executing programCount 
instances of sinx()   (ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

sinx() returns. 
Completion of ISPC program instances. 
Resume sequential execution

1  2  3  4  5  6  7  8  

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code simultaneously 
Upon return, all instances have completed
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sin(x) in ISPC: version 2 
“Blocked” assignment of elements to instances

export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   uniform int count = N / programCount; 
   int start = programIndex * count; 
   for (uniform int i=0; i<count; i++) 
   { 

    int idx = start + i; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (j+3) * (j+4); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc
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Blocked assignment of program instances to loop 
iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

“Gang” of ISPC program instances
In this illustration: gang contains four instances: programCount = 4 

Elements of output array (results)
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Schedule: interleaved assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 4 

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

time

_mm_load_ps1

Single “packed load” SSE instruction (_mm_load_ps1) 
efficiently implements: 
float value = x[idx]; 
for all program instances, since the four values are 
contiguous in memory 

... 
// assumes N % programCount = 0 
for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 

...

i=1

i=2

i=3

i=0
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Schedule: blocked assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 4 

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

time

uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int i=0; i<count; i++) { 

 int idx = start + i; 
 float value = x[idx]; 

...

float value = x[idx]; 
now touches four non-contiguous values in memory. 
Need “gather” instruction to implement 
(gather is a more complex, and more costly SIMD 
instruction: only available since 2013 as part of AVX2)

i=1

i=2

i=3

i=0 _mm_i32gather
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Raising level of abstraction with foreach

export void sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

foreach: key ISPC language construct 

▪ foreach declares parallel loop iterations 

- Programmer says: these are the iterations the 
instances in a gang cooperatively must perform 

▪ ISPC implementation assigns iterations to program 
instances in gang 
- Current ISPC implementation will perform a 

static interleaved assignment (but the 
abstraction permits a different assignment)

Compute sin(x) using Taylor expansion:  sin(x) = x - x3/3! + x5/5! - x7/7! + ...
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▪ Single program, multiple data (SPMD) programming model 
- Programmer “thinks”: running a gang is spawning programCount logical 

instruction streams (each with a different value of programIndex) 

- This is the programming abstraction 

- Program is written in terms of this abstraction 

▪ Single instruction, multiple data (SIMD) implementation 
- ISPC compiler emits vector instructions (e.g., AVX2) that carry out the logic 

performed by a ISPC gang 

- ISPC compiler handles mapping of conditional control flow to vector instructions 
(by masking vector lanes, etc.) 

▪ Semantics of ISPC can be tricky 

- SPMD abstraction + uniform values 
(allows implementation details to peek through abstraction a bit)

ISPC: abstraction vs. implementation
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ISPC discussion: sum “reduction”

export uniform float sumall2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

export uniform float sumall1( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

Compute the sum of all array elements in parallel

sum is of type uniform float (one copy of variable for all program instances) 
x[i] is not a uniform expression (different value for each program instance) 
Result: compile-time type error

Correct ISPC solution
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ISPC discussion: sum “reduction”
export uniform float sumall2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

Compute the sum of all array elements in parallel
Each instance accumulates a private partial sum 
(no communication) 

Partial sums are added together using the reduce_add() cross-
instance communication primitive.  The result is the same total sum for 
all program instances (reduce_add() returns a uniform float) 

The ISPC code at right will execute in a manner similar to handwritten 
C + AVX intrinsics implementation below. *

float sumall2(int N, float* x) { 

  float tmp[8];  // assume 16-byte alignment 
  __mm256 partial = _mm256_broadcast_ss(0.0f); 

  for (int i=0; i<N; i+=8) 
    partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i])); 

  _mm256_store_ps(tmp, partial); 

  float sum = 0.f; 
  for (int i=0; i<8; i++) 
    sum += tmp[i]; 

  return sum; 
}

* Self-test: If you understand why this 
implementation complies with the 
semantics of the ISPC gang abstraction, then 
you’ve got a good command of ISPC
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SPMD programming model summary
▪ SPMD = “single program, multiple data” 

▪ Define one function, run multiple instances of that function 
in parallel on different input arguments

Single thread of control

Resume single thread of control

Call SPMD function

SPMD function returns

SPMD execution: multiple instances of function 
run in parallel (multiple logical threads of control)
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ISPC tasks
▪ The ISPC gang abstraction is implemented by SIMD 

instructions on one core. 

▪ So... all the code I’ve shown you in the previous slides would 
have executed on only one of the four cores of the myth 
machines. 

▪ ISPC contains another abstraction: a “task” that is used to 
achieve multi-core execution.  I’ll let you read up about that.
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Part 2 of today’s lecture

▪ Three parallel programming models 
- That differ in what communication abstractions they present to the programmer 

- Programming models are important because they (1) influence how programmers 
think when writing programs and (2) influence the design of parallel hardware 
platforms designed to execute them 

▪ Corresponding machine architectures 
- Abstraction presented by the hardware to low-level software 

▪ We’ll focus on differences in communication/synchronization
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System layers: interface, implementation, interface, ...

Parallel Applications

Language or library 
primitives/mechanisms

Abstractions for describing 
concurrent, parallel, or 

independent computation

Abstractions for describing 
communication

Compiler and/or parallel runtime

Operating system

Hardware Architecture 
(HW/SW boundary)

Micro-architecture (hardware implementation)

OS system call API

“Programming model” 
(provides way of thinking about 
the structure of programs)

Blue italic text: abstraction/concept 
Red italic text: system interface
Black text: system implementation
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pthread_create()

Example: expressing parallelism with pthreads
Parallel Application

Abstraction for concurrent computation: a thread

OS support: kernel thread management
System call API

Thread 
Programming 

model

pthread library implementation

x86-64
modern multi-core CPU

Blue italic text: abstraction/concept 
Red italic text: system interface
Black text: system implementation
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Example: expressing parallelism with ISPC
Parallel Applications

ISPC language (call ISPC function, foreach construct)

Abstractions for describing parallel computation: 
1. For specifying simultaneous execution (true parallelism) 

2. For specifying independent work (potentially parallel)

OS support

x86-64 (including AVX vector instructions)
single-core of CPU

System call API

ISPC 
Programming 

model

ISPC compiler

Note: This diagram is specific to the ISPC gang abstraction.  ISPC also has the “task” language primitive for multi-core execution. 
I don’t describe it here but it would be interesting to think about how that diagram would look
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Three programming models (abstractions)

1. Shared address space 

2. Message passing 

3. Data parallel
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Shared address space model
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What is memory?

▪ On the first day of class, we described a program as a 
sequence of instructions. 

▪ Some of those instructions read and write from memory. 

▪ But what is memory? 
- To be precise, what I’m really asking is: what is the logical 

abstraction of memory presented to a program
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A program’s memory address space

▪ A computer’s memory is organized as a 
array of bytes 

▪ Each byte is identified by its “address” 
in memory (its position in this array) 
(in this class we assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F
. .

 .

. .
 .

0

In the illustration on the right, the program’s 
memory address space is 32 bytes in size 
(so valid addresses range from 0x0 to 0x1F)
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Shared address space model (abstraction)

int x = 0; 
spawn_thread(foo, &x); 

// write to address holding  
// contents of variable x 
x = 1;

void foo(int* x) { 
  // read from addr storing  
  // contents of variable x 
  while (x == 0) {} 
  print x; 
}

Thread 1: Thread 2:

▪ Threads communicate by reading/writing to shared variables 

(Pseudocode provided in a fake C-like language for brevity.)

Thread 1

x

Thread 2
Shared address space

Store to x

Load from x

(Communication operations shown in red)
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Shared address space model

int x = 0; 
Lock my_lock; 

spawn_thread(foo, &x, &my_lock); 

mylock.lock(); 
x++; 
mylock.unlock();

void foo(int* x, lock* my_lock) 
{ 
  my_lock->lock(); 
  x++; 
  my_lock->unlock(); 
   
  print x; 
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Synchronization primitives are also shared variables: e.g., locks
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Review: why do we need mutual exclusion?
▪ Each thread executes 

- Load the value of diff from location in memory into register r1 
- Add the register r2 to register r1 
- Store the value of register r1 into diff 

▪ One possible interleaving: (let starting value of diff=0, r2=1) 

r1 ← diff 

r1 ← r1 + r2 

diff ← r1

r1 ← diff 

r1 ← r1 + r2 

diff ← r1

T0 T1

T0 reads value 0 

T1 reads value 0 

T0 sets value of its r1 to 1 

T1 sets value of its r1 to 1 

T0 stores 1 to diff 

T1 stores 1 to diff

▪ Need this set of three instructions must be “atomic”
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Mechanisms for preserving atomicity
▪ Lock/unlock mutex around a critical section

LOCK(mylock); 

// critical section 

UNLOCK(mylock);

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have first-class support for atomicity of code blocks

atomic { 

  // critical section 

}

atomicAdd(x, 10);
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Review: shared address space model
▪ Threads communicate by: 

- Reading/writing to shared variables in a shared address space 
- Inter-thread communication is implicit in memory loads/stores 
- Thread 1 stores to X  
- Later, thread 2 reads X (and observes update of value by thread 1) 

- Manipulating synchronization primitives 
- e.g., ensuring mutual exclusion via use of locks 

▪ This is a natural extension of sequential programming 
- In fact, all our discussions in class have assumed a shared address space so far!
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HW implementation of a shared address space
Key idea: any processor can directly reference contents of any memory location

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

“Dance-hall” organization

Processor Processor Processor Processor

Memory Memory

Processor

Processor

Processor

Processor

Memory

Processor Processor Processor Processor

Memory MemoryMemory Memory

Interconnect examples

Memory

Shared Bus

Multi-stage network

Crossbar

* Caches (not shown) are another implementation of a shared address space (more on this in a later lecture)
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Shared address space HW architecture

Intel Core i7 (quad core) 
(interconnect is a ring)Example: Intel Core i7 processor (Kaby Lake)

Core 1

Core 3 Core 4

Memory Controller

Memory

Core 2
Integrated 

GPU
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Intel’s ring interconnect
Introduced in Sandy Bridge microarchitecture

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

System Agent

Graphics

▪ Four rings 
- request 
- snoop 
- ack 
- data (32 bytes) 

▪ Six interconnect nodes: four 
“slices” of L3 cache + system 
agent + graphics 

▪ Each bank of L3 connected to 
ring bus twice 

▪ Theoretical peak BW from 
cores to L3 at 3.4 GHz is 
approx. 435 GB/sec 
- When each core is accessing its 

local slice

Core

Core

Core

Core
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SUN Niagara 2 (UltraSPARC T2): crossbar interconnect

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Crossbar 
Switch

Eight cores

Note area of crossbar (CCX): 
about same area as one core on chip
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KNL Mesh Interconnect 
Mesh of Rings 
� Every row and column is a (half) ring 

� YX routing: Go in Y Æ Turn Æ Go in X 

� Messages arbitrate at injection and on 
turn 

 

Cache Coherent Interconnect 
� MESIF protocol (F = Forward) 

� Distributed directory to filter snoops 

 

Three Cluster Modes 
(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 

Intel Xeon Phi (Knights Landing)

▪ 72 cores, arranged as 6 x 6 mesh 
of tiles (2 cores/tile) 

▪ YX routing of messages: 
- Message travels in Y direction 
- “Turn” 
- Message traves in X direction
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Non-uniform memory access (NUMA)

On chip 
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

AMD Hyper-transport / 
Intel QuickPath (QPI)

Example: latency to access address x is higher from cores 5-8 than cores 1-4

Example: modern dual-socket configuration

X

The latency * of accessing a memory location may be different from different 
processing cores in the system 

* Bandwidth from any one location may also be different to different CPU cores
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Summary: shared address space model

▪ Communication abstraction 
- Threads read/write variables in shared address space 

- Threads manipulate synchronization primitives: locks, atomic ops, etc. 

- Logical extension of uniprocessor programming * 

▪ Requires hardware support to implement efficiently 
- Any processor can load and store from any address (its shared address space!) 

- Can be costly to scale to large numbers of processors 
(one of the reasons why high-core count processors are expensive)

* But NUMA implementation requires reasoning about locality for performance
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Message passing model of 
communication
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Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces 

▪ Threads communicate by sending/receiving messages 
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”) 
- receive: sender, specifies buffer to store data, and optional message identifier 

- Sending messages is the only way to exchange data between threads 1 and 2 
- Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local 
variable X as message to thread 2 
and tag message with the id 
“my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id 
“my_msg_id” from thread 1 and 
store contents in local variable Y
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Message passing (implementation)
▪ Hardware need not implement system-wide loads and stores to execute 

message passing programs (to need only communicate messages between 
nodes) 
- Can connect commodity systems together to form large parallel machine 

(message passing is a programming model for clusters and supercomputers)

IBM Blue Gene/P Supercomputer

Cluster of workstations 
(Infiniband network)

Image credit: IBM
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Programming model vs. implementation of 
communication
▪ Common to implement message passing abstractions on machines 

that implement a shared address space in hardware 
- “Sending message” = copying memory from message library buffers 
- “Receiving message” = copy data from message library buffers 

▪ Can implement shared address space abstraction on machines that 
do not support it in HW (via less efficient SW implementations) 
- OS marks all pages with shared variables as invalid 
- OS page-fault handler issues appropriate network requests 

▪ Keep clear in your mind: what is the programming model 
(abstractions used to specify program)? And what is the HW 
implementation?
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The data-parallel model
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Programming models provide a way to think about 
the organization of parallel programs 
(by imposing structure)

▪ Shared address space: very little structure to communication 
- All threads can read and write to all shared variables 
- Challenge: due to implementation details: not all reads and writes have 

the same cost (cost is often not apparent when reading source code!) 

▪ Message passing: structured communication in the form of messages 
- All communication occurs in the form of messages (communication is 

explicit in source code—the sends and receives) 

▪ Data parallel: rigid structure to computation 
- Perform same function on elements of large collections
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Data-parallel model *
▪ Organize computation as operations on sequences of elements 

- e.g., perform same function on all elements of a sequence 

▪ Historically: same operation on each element of an array 
- Matched capabilities SIMD supercomputers of 80’s 
- Connection Machine (CM-1, CM-2): thousands of processors, one instruction decode unit 
- Early Cray supercomputers were vector processors 

- add(A, B, n) ←  this was one instruction on vectors A, B of length n 

▪ A well-known modern example: NumPy: C = A + B 
(A, B, and C are vectors of same length)

* We’ll have multiple lectures in the course about data-parallel programming and data-parallel thinking: this is just a taste
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Key data type: sequences

▪ Ordered collection of elements 

▪ For example, in a C++  like language: Sequence<T> 

▪ e.g., Scala lists: List[T]  

▪ In a functional language (like Haskell): seq T  

▪ Can only access elements of sequence through specific operations 
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Map
▪ Higher order function (function that takes a function as an argument) 
▪ Applies side-effect free unary function f :: a -> b to all elements of 

input sequence, to produce output sequence of the same length 
▪ In a functional language (e.g., Haskell) 

- map :: (a -> b) -> seq a -> seq b  

▪ In C++: 
template<class InputIt, class OutputIt, class UnaryOperation> 
OutputIt transform(InputIt first1, InputIt last1, 
                   OutputIt d_first, 
                   UnaryOperation unary_op);

f f f f f f
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Parallelizing map
▪ Since f :: a -> b is a function (side-effect free), then 

applying f to all elements of the sequence can be done in 
any order without changing the output of the program 

▪ The implementation of map has flexibility to reorder/
parallelize processing of elements of sequence however it 
sees fit
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Optimizing data movement in map

▪ Additional optimizations: highly 
optimized implementations of map 
can also perform optimizations like 
prefetching next element of input 
sequence (to hide memory latency) 

▪ Why are these complex optimizations 
possible? 

const int N = 1024; 
Sequence<float> input(N);   
Sequence<float> tmp(N); 
Sequence<float> output(N); 

map(foo, input, tmp); 
map(bar, tmp, output);

parallel_for(int i=0; i<N; i++) 
{ 
   output[i] = bar(foo(input[i])); 
}

foo bar
input outputtmp

▪ Consider code that performs two back-
to-back maps (like that to left) 

▪ Optimizing compiler or runtime can 
reorganize code (bottom-left) to 
eliminate memory loads and stores 
(“map fusion”)  
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Data parallelism in ISPC

// ISPC code: 
export void absolute_value( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[i] = -x[i]; 
     else 
        y[i] = x[i]; 
 } 

}

foreach construct 

Think of loop body as a function 

Given this program, it is reasonable to think of the 
program as using foreach to “map the loop body 
onto each element” of the arrays X and Y. 

But if we want to be more precise: a sequence is not a 
first-class ISPC concept. It is implicitly defined by how 
the program has implemented array indexing logic in 
the foreach loop. 

(There is no operation in ISPC with the semantic: “map 
this code over all elements of this sequence”)

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x here 

absolute_value(N, x, y);
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Data parallelism in ISPC

// ISPC code: 
export void absolute_repeat( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[2*i] = -x[i]; 
     else 
        y[2*i] = x[i]; 
     y[2*i+1] = y[2*i]; 
 } 

}

Think of loop body as a function 

The input/output sequences being mapped over are 
implicitly defined by array indexing logic 

// main C++ code: 
const int N = 1024; 
float* x = new float[N/2]; 
float* y = new float[N]; 

// initialize N/2 elements of x here 

absolute_repeat(N/2, x, y);

This is also a valid ISPC program! 

It takes the absolute value of elements of x, then 
repeats it twice in the output array y  

(Less obvious how to think of this code as mapping 
the loop body onto existing sequences.)
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Data parallelism in ISPC

// ISPC code: 
export void shift_negative( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
       if (i >= 1 && x[i] < 0) 

       y[i-1] = x[i]; 
     else 
       y[i] = x[i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x 

shift_negative(N, x, y);

The output of this program is undefined! 

Possible for multiple iterations of the loop body to 
write to same memory location 

Data-parallel model (foreach) provides no specification 
of order in which iterations occur 

But model provides no primitives for fine-grained 
mutual exclusion/synchronization). It is not intended 
to help programmers write programs with that 
structure

Think of loop body as a function 

The input/output sequences being mapped over are 
implicitly defined by array indexing logic 
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Gather/scatter: two key data-parallel 
communication primitives

const int N = 1024; 
Sequence<float> input(N); 
Sequence<int> indices; 
Sequence<float> tmp_input(N);   
Sequence<float> output(N); 

stream_gather(input, indices, tmp_input); 
absolute_value(tmp_input, output);

const int N = 1024; 
Sequence<float> input(N); 
Sequence<int> indices; 
Sequence<float> tmp_output(N);   
Sequence<float> output(N); 

absolute_value(input, tmp_output); 
stream_scatter(tmp_output, indices, output);

ISPC equivalent: 

export void absolute_value( 
   uniform float N, 
   uniform float* input, 
   uniform float* output, 
   uniform int* indices) 
{ 
   foreach (i = 0 ... n) 
   { 
      float tmp = input[indices[i]]; 
      if (tmp < 0) 
         output[i] = -tmp; 
      else 
         output[i] = tmp; 
   } 
}

ISPC equivalent: 

export void absolute_value( 
   uniform float N, 
   uniform float* input, 
   uniform float* output, 
   uniform int* indices) 
{ 
   foreach (i = 0 ... n) 
   { 
      if (input[i] < 0) 
         output[indices[i]] = -input[i]; 
      else 
         output[indices[i]] = input[i]; 
   } 
}

Map absolute_value onto stream produced by gather: Map absolute_value onto stream, scatter results:
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Gather instruction

3        12          4          9           9          15       13         0

Index vector: R0 Result vector: R1

Array in memory with (base address = mem_base)

gather(R1, R0, mem_base);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gather supported with AVX2 in 2013  
But AVX2 does not support SIMD scatter (must implement as scalar loop) 
Scatter instruction exists in AVX512 

Hardware supported gather/scatter does exist on GPUs. 
(still an expensive operation compared to load/store of contiguous vector) 

“Gather from buffer mem_base into R1 according to indices specified by R0.”

 mem_base
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Summary: data-parallel model

▪ Data-parallelism is about imposing rigid program structure to 
facilitate simple programming and advanced optimizations 

▪ Basic structure: map a function onto a large collection of data 
- Functional: side-effect free execution 
- No communication among distinct function invocations 

(allow invocations to be scheduled in any order, including in parallel) 

▪ In practice that’s how many simple programs work 

▪ But... many modern performance-oriented data-parallel languages 
do not enforce this structure in the language 
- ISPC, OpenCL, CUDA, etc. 

- They choose flexibility/familiarity of imperative C-style syntax over the safety of a more 
functional form
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Summary
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Summary
▪ Programming models provide a way to think about the 

organization of parallel programs. 

▪ They provide abstractions that permit multiple valid 
implementations. 

▪ I want you to always be thinking about abstraction vs. 
implementation for the remainder of this course.
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Summary
Restrictions imposed by these abstractions are designed to: 

1. Reflect realities of parallelization and communication costs to 
programmer (help a programmer write efficient programs) 

- Shared address space machines: hardware supports any processor accessing any address 
- Messaging passing machines: hardware may accelerate message send/receive/buffering 
- Desirable to keep “abstraction distance” low so programs have predictable performance, but 

want abstractions to be high enough for code flexibility/portability  

2. Provide useful information to implementors of optimizing 
compilers/runtimes/hardware to help them efficiently 
implement programs using these abstractions 

- Consider optimizations possible when implementing ISPC foreach vs higher-order map
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Modern practice: mixed programming models
▪ Use shared address space programming within a multi-core node 

of a cluster, use message passing between nodes 
- Very common in practice 
- Offer convenience of shared address space where it can be implemented 

efficiently (within a node), require explicit communication elsewhere 

▪ Data-parallel-ish programming models often support shared-
memory style synchronization primitives in functions 
- e.g., CUDA, OpenCL 

▪ In a future lecture… CUDA/OpenCL use data-parallel model to 
scale to many cores, but adopt shared-address space model 
allowing threads running on the same core to communicate.
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Questions to consider

▪ Programming models enforce different forms of structure on 
programs. What are the benefits of data-parallel structure? 

▪ With respect to the goals of efficiency/performance… what do 
you think are problems of adopting a very high level of abstraction 
in a programming system? 
- What about potential benefits? 

▪ Choose a popular parallel programming system (for example 
Hadoop, Spark, or Cilk) and try and describe its programming 
model (how are communication and execution expressed?) 


