
Stanford CS149: Parallel Computing
Written Assignment 2

Due October 7th

Problem 1: SPMD Tree Search

NOTE: This question is tricky. But don’t panic, it’s practice and graded on credit! If you can answer
this question you really understand SIMD execution!

The figure below shows a collection of line segments in 1D. It also shows a binary tree data structure
organizing the segments into a hierarchy. Leaves of the tree correspond to the line segments. Each interior
tree node represents a spatial extent that bounds all its child segments. Notice that sibling leaves can (and
do) overlap. Using this data structure, it is possible to answer the question “what is the largest segment
that contains a specified point” without testing the point against all segments in the scene.

For example, the answer for point p = 0.15 is segment 5 (in node N5). The answer for the point p = 0.75
is segment 11 in node N11.

0.0
0.10 0.25

0.20 0.30 0.35 0.40 0.50

0.80

0.60
0.70 0.90

0.95 1.0

0.0 / 0.10

0.10 / 0.25 0.2 / 0.30

0.10 / 0.30

0.0 / 0.30

0.35 / 0.40

0.0 / 0.40

0.0 / 1.0

0.50 / 0.80 0.60 / 0.80

0.50 / 0.80 0.70 / 0.90

0.50 / 0.90 0.95 / 1.0

0.50 / 1.0

N0

N1

N2

N3 N4

N5 N6

N7

N8

N9

N10

N11 N12

N13

N14

Line segments in 1D

Binary Search Tree:

N3
N5

N6 N7 N11

N12

N13
N14

struct Node {
float min, max; // if leaf: start/end of segment, else: bounds on all child segments.
bool leaf; // true if nodes is a leaf node
int segment_id; // segment id if this is a leaf
Node* left, *right; // child tree nodes

};

Page 1



On the following two pages, we provide you two ISPC functions, find_segment_1 and find_segment_2
that both compute the same thing: they use the tree structure above to find the id of the largest line
segment that contains a given query point.

Page 2



struct Node {
float min, max; // if leaf: start/end of segment, else: bounds on all child segments.
bool leaf; // true if nodes is a leaf node
int segment_id; // segment id if this is a leaf
Node* left, *right; // child tree nodes

};

// -- computes segment id of the largest segment containing points[programIndex]
// -- root_node is the root of the search tree
// -- each program instance processes one query point
export void find_segment_1(uniform float* points, uniform int* results, uniform Node* root_node) {

Stack<Node*> stack;
Node* node;
float max_extent = 0.0;

// p is point this program instance is searching for
float p = points[programIndex];
results[programIndex] = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 0) {
node = stack.pop();

while (!node->leaf) {
// [I-test]: test to see if point is contained within this interior node
if (p >= node->min && p <= node->max) {
// [I-hit]: p is within interior node... continue to child nodes
push(node->right);
node = node->left;

} else {
// [I-miss]: point not contained within node, pop the stack
if (stack.size() == 0)
return;

else
node = stack.pop();

}
}

// [S-test]: test if point is within segment, and segment is largest seen so far
if (p >= node->min && p <= node->max && (node->max - node->min) > max_extent) {

// [S-hit]: mark this segment as ‘‘best-so-far’’
results[programIndex] = node->segment_id;
max_extent = node->max - node->min;

}
}

}

Page 3



export void find_segment_2(uniform float* points, uniform int* results, uniform Node* root_node) {

Stack<Node*> stack;
Node* node;
float max_extent = 0.0;

// p is point this program instance is sarch for
float p = points[programIndex];

results[programIndex] = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 0) {
node = stack.pop();

if (!node->leaf) {
// [I-test]: test to see if point is contained within interior node
if (p >= node->min && p <= node->max) {

// [I-hit]: p is within interior node... continue to child nodes
push(node->right);
push(node->left);

}
} else {

// [S-test]: test if point is within segment, and segment is largest seen so far
if (p >= node->min && p <= node->max && (node->max - node->min) > max_extent) {
// [S-hit]: mark this segment as ‘‘best-so-far’’
results[programIndex] = node->segment_id;
max_extent = node->max - node->min;

}
}

}
}

Begin by studying find_segment_1.

Given the input p = 0.1, the a single program instance will execute the following sequence of steps: (I-
test,N0), (I-hit,N0), (I-test, N1), (I-hit, N1), (I-test, N2), (I-hit, N2) (S-test,N3), (S-hit, N3), (I-test, N4), (I-hit,
N4), (S-test, N5), (S-hit, N5), (S-test, N6), (S-test,N7), (I-test, N8), (I-miss, N8). Where each of the above
“steps” represents reaching a basic block in the code (see comments):

• (I-test, Nx) represents a point-interior node test against node x.

• (I-hit, Nx) represents logic of traversing to the child nodes of node x when p is determined to be
contained in x.

• (I-miss, Nx) represents logic of traversing to sibling/ancestor nodes when the point is not contained
within node x.

• (S-test, Nx) represents a point-segment (left node) test against the segment represented by node x.

• (S-hit, Nx) represents the basic block where a new largest node is found x.

The question is on the next page...

Page 4



A. Confirm you understand the above, then consider the behavior of a gang of 4 program instances
executing the above two ISPC functions find_segment_1 and find_segment_2. For example, you
may wish to consider execution on the following array:

points = {0.15, 0.35, 0.75, 0.95}

Describe the difference between the traversal approach used in find_segment_1 and find_segment_2
in the context of SIMD execution. Your description might want to specifically point out conditions
when find_segment_1 suffers from divergence. (Hint 1: you may want to make a table of four
columns, each row is a step by the entire gang and each column shows each program instance’s
execution. Hint 2: It may help to consider which solution is better in the case of large, heavily
unbalanced trees.)

B. Consider a slight change to the code where as soon as a best-so-far line segment is found (inside
[S-hit]) the code makes a call to a very, very expensive function. Which solution might be preferred
in this case? Why?

Page 5



Problem 2: A Cardinal Processor Pipeline

The fast-growing startup Cardinal Processors, Inc. builds a single core, single threaded processor that
executes instructions using a simple four-stage pipeline. As shown in the figure below, each unit performs
its work for an instruction in one clock. To keep things simple, assume this is the case for all instructions
in the program, including loads and stores (memory is infinitely fast).

The figure shows the execution of a program with six independent instructions on this processor. How-
ever, if instruction B depends on the results of instruction A, instruction B will not begin the IF phase of execution
until the clock after WB completes for A.

 CMU 15-418, Spring 2015

Clocks

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Four-stage instruction pipeline: 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute 
WB = “write back” results to registers 

instruction 1 

instruction 2 

instruction 3 

instruction 4 

instruction 5 

instruction 6 

A. Assuming all instructions in a program are independent (yes, a bit unrealistic) what is the instruc-
tion throughput of the processor?

B. Assuming all instructions in a program are dependent on the previous instruction, what is the
instruction throughput of the processor?

C. What is the latency of completing an instruction?

D. Imagine the IF stage is modified to improve its throughput to fetch TWO instructions per clock, but
no other part of the processor is changed. What is the new overall maximum instruction throughput
of the processor?

Page 6



E. Consider the following C program:

float A[500000];
float B[500000];
// assume A is initialized here

for (int i=0; i<500000; i++) {
float x1 = A[i];
float x2 = 6 * x1;
float x3 = 4 + x2;
B[i] = x3;

}

Assuming that we consider only the four instructions in the loop body (for simplicity, disregard in-
structions for managing the loop or calculating load/store addresses), what is the average instruc-
tion throughput of this program? (Hint: You should probably consider instruction dependencies,
and at least two loop iterations worth of work).

F. Modify the program to achieve peak instruction throughput on the processor. Please give your
answer in C-pseudocode.

Page 7



G. Now assume the program is reverted to the original code from part E, but the for loop is parallelized
using OpenMP. (Recall from written assignent 1 is that openMP is a set of C++ compiler extensions
that enable thread-parallel execution. Iterations of the for loop will be carried out in parallel by a
pool of worker threads.)

// assume iterations of this FOR LOOP are parallelized across multiple
// worker threads in a thread pool.
#pragma omp parallel for
for (int i=0; i<100000; i++) {
float x1 = A[i];
float x2 = 2*x1;
float x3 = 3 + x2;
B[i] = x3;

}

Given this program, imagine you wanted to add multi-threading to the single-core processor to
obtain peak instruction throughput (100% utilization of execution resources). What is the smallest
number of threads your processor could support and still achieve this goal? You may not change
the program.

Page 8


